
I	warn	this	programme	that	any	recurrence	of	this	sloppy	long-haired
civilian	plagiarism

will	be	dealt	with	most	severely

Recursion
Here	is	a	famous	example	of	visual	recursion	often	called	the	Droste	effect.	Droste	is
a	Dutch	chocolate	maker.	Notice	that	the	box	has	a	picture	of	the	box	on	it,	which
itself	has	a	picture	of	the	box	on	it.	If	the	picture	were	detailed	enough,	this	would
continue	endlessly.

Another	Problem	Solving	Strategy
In	this	section,	we	will	look	into	another	way	of	solving	problems.	To	do	this,	we	will
start	with	a	very	simple	example.

Suppose	we	have	the	problem	of	summing	a	list	of	numbers	(without	using	the
existing	sum	function).	This	is	an	easy	task,	but	we’ll	take	a	different	approach	to
solving	it	than	we’ve	seen	before.	To	be	explicit,	we	need	to	write	the	body	for	this
function	definition:

def	add(numbers)	:
				"""Add	up	a	list	of	numbers.
				
				Parameters:
								numbers	(list):	List	of	numbers	to	be	summed.

				Return:
								float:	Sum	of	all	the	values	in	'numbers'.
				"""
				pass	#	Something	else	goes	here.

The	pass	keyword	is	a	statement	that	does	nothing	when	it	is	executed;	it	is	known	as
a	“no	operation”	statement,	usually	abbreviated	to	NOP	or	NOOP	(pronounced	“no-
op”).	It	is	useful	as	a	placeholder	when	a	block	of	code	is	needed	but	has	not	been
written	yet.	When	we	write	the	function	body,	we	will	remove	the	pass	statement.

Here	is	the	plan:	To	add	up	a	list	of	numbers,	we	will	take	the	first	number,	and	add
on	the	sum	of	the	remaining	(all	but	the	first)	numbers.	Check	that	this	process	will
give	the	correct	sum.	Here	is	an	expression	which	should	get	the	first	number	of	a	list
and	add	together	the	remaining	numbers:

numbers[0]	+	add(numbers[1:])

Notice	what	is	happening	here:	that	we	are	solving	the	problem	of	adding	up	a	list	of
numbers	by	adding	up	a	smaller	list	of	numbers.	To	add	up	this	smaller	list	of
numbers,	we	can	apply	this	process	again,	and	add	up	an	even	smaller	list	of
numbers,	and	so	on.	A	function	that	computes	a	result	by	calling	the	same	function	is
called	a	recursive	function.	Recursion	is	the	method	of	problem	solving	by	using



recursive	functions.

But	there	is	a	slight	problem	here:	we	are	not	really	ever	adding	up	the	numbers,	we
are	just	constantly	changing	the	problem	to	a	smaller	list	of	numbers.	We	need	to
decide	on	a	point	where	it	is	more	sensible	to	just	return	a	result	instead	of	trying	to
go	further.	That	point	comes	when	we	have	reached	the	smallest	list	possible,	which
is	the	empty	list.	If	the	list	is	empty,	then	the	result	of	the	sum	should	be	0	(when
there	are	no	numbers	to	add	up,	the	total	is	zero).

Summarising,	our	strategy	is	now	in	two	separate	cases:	if	the	list	is	empty,	then	the
result	is	0.	Otherwise,	the	result	is	numbers[0]	+	add(numbers[1:]).	This	makes	it	very
easy	to	write	the	function:

def	add(numbers)	:
				"""Add	up	a	list	of	numbers.
				
				Parameters:
								numbers	(list):	List	of	numbers	to	be	summed.

				Return:
								float:	Sum	of	all	the	values	in	'numbers'.
				"""
				if	not	numbers	:
								return	0
				else	:
								return	numbers[0]	+	add(numbers[1:])

We	have	seen	plenty	of	examples	of	functions	or	methods	whose	definitions	contain
occurrences	of	other	functions	or	methods.	The	above	example	shows	that	there	is
nothing	to	stop	us	defining	a	function	that	contains	an	occurrence	of	itself.	Does	this	
add	function	work?	Download	add.py	to	test	it.

>>>	add([3,	8,	5])
16

Aside:	Be	Efficient

Notice	that	each	recursive	step	of	our	add	function	performs	a	list	slice	
numbers[1:],	which	essentially	makes	a	copy	of	the	whole	list.	Doing	this	at	every
step	makes	the	recursive	function	inefficient.	In	the	next	section,	we	will	return
to	the	question	of	efficiency.	A	more	efficient	way	to	add	a	list	of	numbers
would	be	to	use	a	loop,	or	the	built-in	sum	function.

Using	Recursion
What	is	involved	in	designing	a	recursive	function?	One	is	the	recursive	step	case,
which	typically	involves	solving	the	problem	by	calling	the	same	function	with	a
slightly	smaller	input.	Examples	of	“smaller	input”	are	a	list	or	string	with	the	first
element	removed,	or	a	number	minus	one.	The	other	is	the	base	case	or	termination
case,	which	is	typically	on	the	smallest	possible	input,	where	solving	the	problem	is
typically	a	trivial	task.	For	example,	the	input	for	a	base	case	might	be	an	empty	list
or	string,	or	the	number	0	(or	another	small	number).



In	the	case	of	the	add	example,	the	recursive	step	is	to	say	that	the	sum	of	the	list	
numbers	is	given	by	numbers[0]	+	add(numbers[1:]),	where	numbers[1:]	is	our	slightly
smaller	sub-problem.	The	base	case	is	found	when	the	list	is	empty,	in	this	case	the
result	is	0.	It	is	useful	to	ensure	that	the	base	case	deals	with	any	situation	that	does
not	apply	to	the	recursive	step.	In	the	add	function,	the	expression	numbers[0]	+	
add(numbers[1:])	doesn’t	work	when	the	list	is	empty	(since	“numbers[0]”	will	raise	an	
IndexError),	so	this	must	be	handled	by	the	base	case.

It	may	be	useful	to	explicitly	study	how	the	recursive	add	function	computes	a	result.
See	the	visualisation	of	the	add	function	on	BlackBoard.

When	writing	a	recursive	function,	it	is	often	helpful	to	apply	wishful	thinking.	In	this
process,	we	assume	that	we	can	solve	the	problem	with	smaller	inputs	and	think
about	how	that	could	be	used.	That	is,	if	we	knew	the	solution	to	a	smaller	problem,
how	could	we	find	the	solution	to	our	problem?	Once	that	is	answered,	how	does	that
recursive	step	eventually	reach	a	“simplest	case,”	and	how	do	we	handle	that	case?

Recursive	Definitions
In	computer	science	and	mathematics,	recursive	definitions	are	definitions	that
refer	to	themselves.	For	example,	one	definition	of	the	factorial	function	n!	is:

A	recursive	definition	is	very	easy	to	translate	directly	into	Python	code.	The	above
definition	of	the	factorial	function	can	be	represented	in	Python	as:

def	factorial(n)	:
				"""Calculate	the	factorial	of	the	given	number	'n'.
					
				Parameters:
								n	(int):	Number	for	which	the	factorial	is	to	be	calculated.

				Return:
								int:	Factorial	of	'n'.
				"""
					if	n	==	0	:
								return	1
				else	:
								return	factorial(n-1)	*	n

Do	we	really	need	recursion?	Can’t	we	just	write	a	while	loop	to	do	the	work?	How
about	the	following	definition?

def	factorial2(n)	:
				"""Calculate	the	factorial	of	the	given	number	'n'.
					
				Parameters:
								n	(int):	Number	for	which	the	factorial	is	to	be	calculated.

				Return:
								int:	Factorial	of	'n'.
				"""
				factorial	=	1
				while	n	!=	0	:
								factorial	*=	n
								n	-=	1
				return	factorial



This	certainly	works	—	not	exactly.	Both	versions	have	a	problem	if	we	supply	them
with	a	negative	integer	or	a	float.	They	will	both	go	into	‘infinite	loops’	as	subtracting
1	will	never	reach	the	terminating	condition	n	==	0.	We	really	need	to	constrain	n	to	be
a	non-negative	integer.

It	is	clear	that	the	recursive	Python	definition	is	an	obviously	correct	implementation
of	the	mathematical	definition	but	it	is	not	so	clear	that	the	non-recursive	definition	is
a	correct	implementation.	This	is	to	be	expected	though	—	a	recursive	mathematical
definition	should	have	a	more	direct	translation	into	a	recursive	program	than	a	non-
recursive	one.

Still,	recursion	is	not	really	needed	here	—	we	can	work	a	bit	harder	and	avoid
recursion.	Is	this	always	the	case?	No	—	it	turns	out	that	there	a	certain	kinds	of
problems	that	are	just	“inherently	recursive”.

A	Counting	Problem
As	an	example,	we	will	write	a	recursive	function	to	solve	the	following	counting
problem.

Consider	the	grid	below,	each	corner	is	at	integer	coordinates.	We	start	at	the	top-
left,	(0,0),	and	we	are	allowed	to	move	down	and	right	along	the	lines	in	the	grid	to
reach	the	coordinates	(x,y).	The	task	to	solve	is,	how	many	different	paths	can	we
take	to	reach	the	point	(x,y)?	For	example,	two	possible	paths	from	(0,0)	to	(3,4)	are
shown	below.

We	will	write	a	function	num_paths(x,	y)	to	solve	this	problem.	To	solve	a	problem	like
this	it	can	help	to	start	with	a	pen	and	paper	and	try	a	few	examples	to	get	a	handle
on	the	problem.	We	can	try	this	and	use	wishful	thinking:	if	we	knew	the	number	of
paths	to	other	points	on	the	grid,	could	we	easily	find	the	number	of	paths	to	the	one
we’re	interested	in?

We	quickly	notice	that	every	path	to	(x,y)	must	finish	by	going	through	either	of	the
points	next	to	it:	(x-1,y)	or	(x,y-1).	How	does	this	help?	We	can	see	from	this	that	the
number	of	paths	to	(x,y)	is	the	sum	of	the	number	of	paths	to	each	of	these	adjacent
points:	num_paths(x-1,	y)	+	num_paths(x,	y-1).	Here	we	have	the	recursive	step.

In	finding	the	base	case,	we	need	to	consider,	what	case	does	every	recursive	step
eventually	lead	to?	In	this	problem,	the	recursive	step	moves	backwards	along	the
grid,	both	left	and	up.	This	will	eventually	reach	either	the	left	or	top	edge	(that	is,
when	x	==	0	or	y	==	0).	So	now	we	consider,	how	many	paths	are	there	to	a	point	on
the	top	or	left	edges?

In	fact,	there	is	only	one	path,	which	goes	either	straight	down	or	straight	to	the
right.	So,	if	x	==	0	or	y	==	0,	the	result	is	1.

These	observations	lead	to	the	following	definition.

def	num_paths(x,	y)	:
				"""Calculate	the	number	of	paths	to	point	(x,y)
					
				Parameters:
								x	(int):	x	coordinate	of	the	point.
								y	(int):	y	coordinate	of	the	point.

				Return:
								int:	Number	of	paths	from	(0,0)	to	(x,y).



				"""

					if	x	==	0	or	y	==	0	:
								return	1
				else	:
								return	num_paths(x,	y-1)	+	num_paths(x-1,	y)

This	turns	out	to	be	a	simple,	elegant	solution.	We	argue	that,	without	knowing	the
mathematical	function	for	the	number	of	paths,	it	is	extremely	difficult	to	write	a	non-
recursive	program	to	solve	the	problem.

Recursive	ADTs
Now	we	will	look	at	a	slightly	different	topic.	We	will	start	with	a	new	ADT,	the
binary	search	tree	(actually,	a	simplified	version	of	it).	A	binary	search	tree	is	a	way
of	storing	a	collection	of	values	in	order,	which	is	useful	in	many	applications	where
lots	of	data	needs	to	be	efficiently	stored	and	accessed.	A	binary	search	tree	is	made
of	multiple	nodes,	each	node	contains	these	things:

A	value,	which	is	the	piece	of	information	being	stored.	It	can	be	any	type	of	data
that	allows	==,	<	and	>	comparisons.
An	optional	“left	child”,	which	is	another	node.	All	the	nodes	to	the	left	of	this
one	(called	the	left	subtree)	must	have	values	that	are	less	than	the	value	of	this
node.
An	optional	“right	child”,	which	is	another	node.	All	the	nodes	to	the	right	of	this
one	(the	right	subtree)	must	have	values	that	are	greater	than	or	equal	to	the
value	of	this	node.	To	visualise	this	definition,	the	diagram	below	shows	a
common	way	to	represent	a	tree.	Each	node	is	a	circle	with	the	value	inside.	The
top-most	node	(in	this	case,	the	one	with	value	5)	is	called	the	root,	which	can	be
used	to	access	the	entire	tree.	Nodes	without	any	children	(in	this	case,	2,	4,	6,
and	8)	are	called	leaves.

Take	a	moment	to	understand	how	this	diagram	relates	to	the	definition	above.	For
example,	3	and	7	are	the	left	and	right	children	of	5.	The	nodes	with	2,	3	and	4	make
up	the	left	subtree	of	5.	We	should	also	check	that	each	node	satisfies	the	“less	than”
and	“greater	than”	properties	described.	5	is	greater	than	2,3,4	and	less	than	6,7,8.	3
is	greater	than	2	and	less	than	4.	7	is	greater	than	6	and	less	than	8.

There	is	an	important	idea	that	has	been	introduced	in	this	ADT:	nodes	store	other
nodes.	This	is	an	example	of	a	recursive	ADT,	a	data	type	which	stores	other
instances	of	itself.	These	nodes	can	themselves	store	other	nodes,	and	so	on.	They	are
analogous	to	a	recursive	step	in	a	recursive	function.	Leaf	nodes	are	analogous	to	a
base	case	in	a	recursive	function,	because	they	are	the	simplest	type	of	node,	and	also
where	the	path	of	“travelling	along”	nodes	stops.	One	other	interesting	property	of
the	binary	search	tree	is	that	each	subtree	is	itself	a	tree:	for	example,	the	nodes	2,	3
and	4	form	a	tree	by	themselves.

Nodes	in	a	binary	search	tree	can	support	the	following	operations:

Node.insert(value)	—	insert	a	new	value	into	one	of	the	subtrees	of	this	node,
preserving	the	tree	ordering	property.
Node.to_list()	—	return	a	sorted	list	of	values	of	this	node	and	its	subtrees.
value	in	node	—	a	boolean	test	that	checks	if	this	value	is	stored	in	this	node	or	its
subtrees.

All	of	these	are	easiest	to	implement	recursively,	which	is	helped	by	the	recursive
nature	of	the	tree	structure.	Let’s	start	writing	a	Node	class	to	represent	nodes.	When



a	node	is	created,	it	has	no	children	yet,	so	we	will	use	None	to	represent	indicate	that
there	are	no	left	or	right	sub-trees.

class	Node(object)	:
				"""A	node	in	a	binary	search	tree."""

				def	__init__(self,	value)	:
								"""A	new	Node	in	a	Binary	Search	Tree
					
								Parameters:
												value:	Element	to	be	stored	in	this	Node.	
																			Must	be	comparable	by	==,	>	and	<.
								"""
								self._value	=	value
								self._left	=	None
								self._right	=	None

For	the	insert	method,	the	value	should	be	added	as	a	new	node	in	either	the	left	or
right	subtree,	whichever	is	appropriate.	Note	that	the	method	does	this	by	making
recursive	calls	to	insert	on	other	nodes.	The	“base	case”	is	when	the	left	or	right	child
does	not	exist,	so	a	new	Node	is	created.	Note	also	that	if	the	value	being	inserted	is
equal	to	the	value,	it	will	go	in	the	right	subtree,	but	there	is	no	reason	it	cannot	go	in
the	left	subtree	instead.

				def	insert(self,	value)	:
								"""Add	'value'	into	this	Node	in	the	search	tree.
					
								Parameters:
												value:	Element	to	be	stored	in	this	Node.	
																			Must	be	comparable	by	==,	>	and	<.
								"""
								if	value	<	self._value	:
												if	self._left	is	None	:
																self._left	=	Node(value)
												else	:
																self._left.insert(value)
								else	:
												if	self._right	is	None	:
																self._right	=	Node(value)
												else	:
																self._right.insert(value)

To	write	the	to_list	method,	we	can	use	this	rationale:	all	the	nodes	in	the	left	subtree
will	be	less	than	the	current	node,	so	recursively	calling	self._left.to_list()	will	give
us	the	first	portion	of	the	list	in	sorted	order.	We	can	then	append	the	current	value.
Similarly,	a	call	to	self._right.to_list()	will	give	us	the	last	portion	of	the	list	in	sorted
order,	which	can	be	extended	onto	the	end.	Notice	that	the	base	case	is	not	explicitly
written,	but	it	is	still	there:	if	both	of	the	children	are	None,	then	no	recursive	calls	will
be	made.

				def	to_list(self)	:
								"""Return	a	sorted	list	of	the	values	of	this	Node's	children."""
								result	=	[]
								if	self._left	is	not	None	:
												result.extend(self._left.to_list())
								result.append(self._value)
								if	self._right	is	not	None	:



												result.extend(self._right.to_list())
								return	result

To	use	the	value	in	node	syntax,	a	class	must	implement	the	__contains__	method	and
return	True	or	False.	We	will	determine	if	the	value	we	are	searching	for	is	greater	or
less	than	the	current	node’s	value,	then	we	will	search	for	the	value	in	either	the	right
or	left	subtree.	Notice	below	that	value	in	self._left	and	value	in	self._right	are
actually	recursive	steps,	because	they	both	use	the	same	__contains__	method	on	a
subtree.	If	the	value	is	the	one	that	we	are	searching	for,	we	can	return	True,
otherwise,	there	is	no	other	way	to	find	the	value	and	we	return	False,	these	are	both
base	cases.

				def	__contains__(self,	value)	:
								if	value	==	self._value	:
												return	True
								elif	value	<	self._value	and	self._left	is	not	None	:
												return	value	in	self._left
								elif	value	>	self._value	and	self._right	is	not	None	:
												return	value	in	self._right
								else	:
												return	False

Lastly,	we	can	implement	a	__str__	method:

				def	__str__(self)	:
								return	"({0},	{1},	{2})".format(self._left,	self._value,	self._right)

How	does	this	work?	When	performing	the	.format	on	each	child,	if	the	child	is	None,
then	"None"	will	appear	in	the	string	result.	If	the	child	is	a	Node,	then	.format	method
will	recursively	call	str	on	that	node.	This	is	an	example	of	the	potential	for	writing
very	elegant	recursive	functions.

It	is	sometimes	much	easier	to	write	a	function	recursively	than	iteratively,	and	being
able	to	work	with	recursive	methods	is	an	important	skill.

For	completeness,	we	will	also	give	an	implementation	of	a	binary	search	tree	class,
which	simply	keeps	track	of	the	root	node	(if	there	is	one	—	the	tree	might	not	have
any	nodes)	and	refers	to	the	root	node	when	its	methods	are	called.	The	two	classes
can	be	downloaded:	search_tree.py

class	BinarySearchTree(object)	:
				"""A	binary	search	tree."""

				def	__init__(self)	:
								"""A	new	empty	binary	search	tree."""
								self._root	=	None

				def	insert(self,	value)	:
								"""Add	'value'	into	the	tree.
								
								Preconditions:
												'value'	is	comparable	by	at	least	the	==,	>	and	<	operators.
								"""
								if	self._root	is	None	:



												self._root	=	Node(value)
								else	:
												self._root.insert(value)

				def	to_list(self)	:
								"""Return	a	sorted	list	of	the	values	in	this	tree."""
								if	self._root	is	None	:
												return	[]
								return	self._root.to_list()

				def	__contains__(self,	value)	:
								return	self._root	is	not	None	and	value	in	self._root

				def	__str__(self)	:
								if	self._root	is	None	:
												return	"()"
								return	str(self._root)

Here	are	some	examples	of	using	this	tree.	The	interaction	below	creates	a	tree	with
the	same	structure	as	the	diagram	above,	the	second	is	a	simple	function	that	sorts	a
list	of	numbers	that	takes	advantage	of	to_list.	Study	the	output	of	print(tree)	and
relate	it	to	both	the	diagram	and	the	Node.__str__	method	above.

>>>	tree	=	BinarySearchTree()
>>>	for	v	in	[5,	3,	2,	4,	7,	6,	8]:
								tree.insert(v)

>>>	print(tree)
(((None,	2,	None),	3,	(None,	4,	None)),	5,	((None,	6,	None),	7,	(None,	8,	None)))
>>>	tree.to_list()
[2,	3,	4,	5,	6,	7,	8]
>>>	4	in	tree
True
>>>	7.5	in	tree
False

>>>	def	tree_sort(lst)	:
								"""A	sort	implementation	using	a	tree.
								
								Parameters:
												lst:	List	of	elements	to	be	sorted.

								Return:
												Sorted	list	of	elements.

								Preconditions:
												All	elements	of	'lst'	are	comparable	by	
												at	least	the	==,	>,	and	<	operators.
								"""
								tree	=	BinarySearchTree()
								for	element	in	lst	:
												tree.insert(element)
								return	tree.to_list()

Aside:	An	advanced	implementation

Some	students	may	wish	to	challenge	themselves	and	experiment	with	another
implementation	of	a	binary	search	tree.	search_tree2.py	contains	a	more	elegant



implementation,	as	well	as	support	for	the	len	function	and	for-loops	(using
content	from	the	optional	material	on	functional	programming.

Aside:	Is	recursion	necessary?

The	problems	we	have	looked	at	in	this	section	were	solved	by	writing	recursive
functions,	but	did	we	need	to	use	recursion?	When	can	a	recursive	function	be
written	iteratively	(using	a	loop)	instead?

A	function	is	tail	recursive	if	the	recursive	call	is	the	last	thing	that	happens
before	the	function	returns.	Tail	recursive	functions	can	be	directly	translated
into	an	iterative	function.	In	fact,	some	other	programming	languages	will
notice	when	tail	recursion	is	used	and	optimise	it	so	it	behaves	iteratively.

For	example,	the	Node.insert	method	is	tail	recursive,	because	when	the	insert
method	is	called	recursively,	that	is	the	last	step	the	function	takes.	The	insert
method	can	be	defined	iteratively	as	below.

				def	insert(self,	value)	:
								"""Add	a	value	into	this	node	in	the	search	tree."""
								node	=	self
								while	True	:
												if	value	<	node._value	:
																if	node._left	is	None	:
																				node._left	=	Node(value)
																				break
																else	:
																				node	=	node._left
												else	:
																if	node._right	is	None	:
																				node._right	=	Node(value)
																				break
																else	:
																				node	=	node._right

However,	with	a	good	understanding	of	recursion,	many	people	would	prefer
the	original	recursive	method.

The	__contains__	method	is	also	tail	recursive,	and	can	similarly	be	defined	using
a	while	loop.	However,	to_list	and	__str__	are	not	tail	recursive,	because	after	a
recursive	call	is	made,	there	is	still	more	work	to	be	done	before	returning	the
result.	These	two	methods	are	very	difficult	to	write	without	using	recursion.
The	num_paths	function	above	is	also	not	tail	recursive,	and	cannot	easily	be
translated	into	an	iterative	function.

Note	however	that	there	are	functions,	such	as	add	and	factorial	from	earlier,
which	are	not	tail	recursive	but	can	be	rewritten	iteratively	using	a	bit	more
thought.


