
And	now	for	something	completely	different.

–	John	Cleese

Functional	Programming,	List
Comprehension,	Iterators,	Generators
Functional	Programming
Functional	Programming	is	a	programming	paradigm	in	which	problems	are
decomposed	into	collections	of	functions	(in	the	mathematical	sense)	and	computation
is	expression	evaluation.	Functional	Programming	languages	are	examples	of
declarative	languages	in	which	the	programmer	writes	a	specification	of	the	problem
to	be	solved	and	the	declarative	language	implementation	determines	how	to	solve
the	problem	given	the	specification.	In	functional	languages	the	specification	is	a
collection	of	definitions	of	mathematical	functions	and	the	problem	to	be	solved	is
expressed	as	a	mathematical	expression	to	be	evaluated	based	on	the	given	function
definitions.

In	pure	functional	programming	there	is	no	state	(program	variables)	that	can	be
modified.	A	consequence	of	this	is	that	it	is	much	easier	to	reason	about	the
correctness	of	programs	written	in	that	style	than	in	procedural	languages	where
state	changes.	An	example	of	a	popular	(pure)	functional	programming	language	is
Haskell.

Python	is	not	a	functional	programming	language	but	it	does	borrow	some	ideas	from
functional	languages	such	as	anonymous	functions,	higher-order	programming,	list
comprehension	and	lazy	evaluation	that,	for	example,	provide	powerful	list	processing
techniques.	We	will	look	at	examples	shortly.

Iterators
We	are	familiar	with	the	concept	of	for-loops	by	now.	They	take	a	collection	of	data
and	look	at	it	one	piece	at	a	time	from	start	to	end.	An	object	that	can	be	iterated	over
is	called	an	iterable.	For	example,	strings,	tuples,	lists,	and	dictionaries	are	all
iterables.	But	how	do	they	work?	How	can	we	write	our	own	iterables?	How	can	we
take	advantage	of	iterables	to	do	more	powerful	things?

All	iterables	can	create	a	‘stream	of	data’	that	can	be	accessed	one	element	at	a	time,
called	an	iterator.	Python	uses	the	iterator	to	perform	for-loops.	Iterators	are	made
using	the	iter	function,	and	the	“one	element	at	a	time”	access	is	done	using	the	next
function.	next	will	return	the	next	piece	of	data.	If	there	is	no	more	data,	then	a	
StopIteration	exception	will	be	raised.	Here	is	an	example	using	a	string.	In	this	case,	
x	is	an	iterable,	and	it	is	an	iterator.

>>>	s	=	'spam'
>>>	it	=	iter(s)
>>>	next(it)
's'
>>>	next(it)
'p'
>>>	next(it)
'a'
>>>	next(it)
'm'

https://www.haskell.org/

>>>	next(it)
Traceback	(most	recent	call	last):
		File	"<pyshell#6>",	line	1,	in	<module>
				next(it)
StopIteration

Since	iterators	are	only	accessed	one	element	at	a	time,	there	are	a	few	advantages.
If	possible,	iterators	can	be	written	to	calculate	the	data	‘on	the	fly’	when	requested,
instead	of	calculating	and	storing	all	the	data	at	once.	This	idea	is	called	lazy
evaluation.	In	fact,	this	approach	can	be	used	to	generate	an	infinite	stream	of	data.
As	long	as	we	do	not	want	to	get	all	the	elements	(which	would	lead	to	infinite
computation)	this	idea	can	lead	to	elegant	solutions	to	problems	that	can	be	difficult
to	express	with	finite	structures.

Where	can	lazy	evaluation	be	useful?	The	range	and	enumerate	functions	are	example	of
this.	Recall	that	range	and	enumerate	return	a	special	class	that	is	a	sequence	of
numbers	and	objects.	The	reason	for	this	is	that	these	two	functions	are	mainly	used
in	just	performing	a	for-loop	over	the	data.	Therefore,	they	are	iterator	types,	making
use	of	them	for	very	large	data	sets	avoids	using	up	too	much	of	the	computer’s
resources.

Iterables	and	Iterators

iter(iterable)
iter(iterator)
next(iterator)

Semantics

An	iterable	is	an	object	which	can	be	iterated	over	(for	example,	used	in	for-
loops).	An	iterator	is	an	object	which	produces	a	stream	or	sequence	of	data
one	element	at	a	time.	iter(iterable)	will	create	a	new	iterator.	iter(iterator)
will	return	the	same	iterator.	next(iterator)	will	return	the	next	value	in	the
sequence.	If	the	sequence	has	finished,	this	function	will	raise	StopIteration.

How	do	we	write	an	iterable	class,	and	the	corresponding	iterator?	An	iterable	class
must	have	an	__iter__	method	to	support	the	iter	function.	The	method	should	return
an	iterator.	The	iterator	object	must	have	a	next	method	which	either	returns	the	next
value	or	raises	StopIteration.	The	iterator	must	also	have	an	__iter__	method	which
returns	the	iterator	itself;	this	is	so	that	the	iterator	itself	can	also	be	iterated	over.	To
demonstrate,	here	is	an	example	(geometric.py)	involving	a	geometric	sequence,	which
is	a	sequence	where	each	term	is	multiplied	by	a	fixed	ratio.

class	GeometricSequence(object)	:
				"""A	geometric	sequence	of	numbers.

				The	sequence	of	numbers:
				start,	start	*	ratio,	start	*	ratio**2,	...,	start	*	ratio**(length-1)
				Without	a	length	parameter,	the	sequence	is	infinite.
				"""

				def	__init__(self,	start,	ratio,	length=None)	:

								self._start	=	start
								self._ratio	=	ratio
								self._len	=	length

				def	__iter__(self):
								return	GeometricIterator(self._start,	self._ratio,	self._len)

class	GeometricIterator(object)	:
				"""An	iterator	on	a	geometric	sequence."""

				def	__init__(self,	start,	ratio,	length)	:
								#	Store	values	for	later
								self._ratio	=	ratio
								self._len	=	length
								#	Store	information	about	position	in	the	sequence
								self._pos	=	0
								self._value	=	start

				def	__iter__(self)	:
								return	self

				def	next(self)	:
								#	Check	if	the	sequence	has	finished
								if	self._len	is	not	None	and	self._pos	>=	self._len	:
												raise	StopIteration
								tmp	=	self._value
								#	Update	for	next	time.
								self._value	*=	self._ratio
								self._pos	+=	1
								return	tmp

>>>	powers_two	=	GeometricSequence(1,	2)
>>>	it	=	iter(powers_two)
>>>	next(it)
1
>>>	next(it)
2
>>>	next(it)
4
>>>	next(it)
8
>>>	for	x	in	powers_two	:
				print(x,	end="	")
				if	x	>	1000	:
								break

1	2	4	8	16	32	64	128	256	512	1024
>>>	seq	=	GeometricSequence(2,	3,	6)
>>>	for	x	in	seq	:
								print(x,	end="	")

2	6	18	54	162	486	
>>>	54	in	seq
True
>>>	20	in	seq
False
>>>	print('	'.join(GeometricSequence('*',	2,	4)))
*	**	****	********

Notice	that	the	for-loop	in	the	first	example	exits	with	a	break.	Since	the	sequence	is
infinite,	there	is	no	way	to	exit	the	loop	other	than	specifying	a	condition	we	are
interested	in	(which	depends	on	the	problem	we	are	solving).	The	second	sequence	is
defined	with	a	length	of	6,	so	after	enough	calls	to	next,	a	StopIteration	is	raised	and
the	for	loop	exits	naturally.	The	second	sequence	can	also	perform	in	tests.	Be	careful

of	performing	in	tests	on	infinite	sequences	like	powers_two,	because	it	will	never	stop
looking	through	the	sequence	if	the	value	is	not	there.	The	third	example	shows	a
geometric	sequence	of	strings	instead	of	numbers.

Generators
That	last	example	was	pretty	big	for	code	that	generates	a	simple	sequence,
especially	having	to	write	two	classes.	As	always,	Python	has	found	a	simpler	way	of
doing	it.

Generators	are	iterators	that	use	a	syntax	very	similar	to	functions,	using	a	yield
statement	instead	of	return.	When	a	normal	function	in	Python	is	called,	the	body	is
executed,	and	there	is	a	return	statement	(possibly	implicit)	that	stops	the	function
and	returns	control	back	to	the	caller.	When	a	generator	function	is	called,	the	body
of	the	function	is	not	executed,	instead	we	get	a	generator	object.	When	next	is	called
on	the	generator	object,	the	function	body	begins	executing	and	when	the	yield
statement	is	reached	the	value	supplied	to	yield	is	returned.	The	execution	of	the
function	is	suspended	at	this	point	and	the	local	state	of	the	function	is	preserved.
When	next	is	again	called	the	program	resumes	from	the	point	of	suspension	and
continues	until	the	next	yield	statement	is	reached.	In	this	way,	the	generator	code	is
constantly	starting	and	stopping,	generating	values	through	repetitive	yield
statements.	Below	is	an	example	of	a	generator	that	illustrates	this	behaviour	using
the	geometric	sequence	concept	from	before,	which	is	also	in	geometric2.py.

def	geometric(start,	ratio,	length=None)	:
				pos	=	0
				value	=	start
				while	length	is	None	or	pos	<	length	:
								yield	value
								value	*=	ratio
								pos	+=	1

>>>	powers_two	=	geometric(1,	2)
>>>	next(powers_two)
1
>>>	next(powers_two)
2
>>>	next(powers_two)
4
>>>	list(geometric(2,	3,	6))
[2,	6,	18,	54,	162,	486]

Here	is	another	simple	example.	The	print	statements	are	added	to	show	how	the
execution	of	the	generator	body	works.

def	gen_range(n)	:
				print('start')
				for	i	in	range(n)	:
								print('before	yield:	i	=',	i)
								yield	i
								print('after	yield:	i	=',	i)

>>>	gen	=	gen_range(3)
>>>	gen
<generator	object	gen_range	at	0x011DC350>
>>>	next(gen)
start
before	yield:	i	=	0
0

>>>	next(gen)
after	yield:	i	=	0
before	yield:	i	=	1
1
>>>	next(gen)
after	yield:	i	=	1
before	yield:	i	=	2
2
>>>	next(gen)
after	yield:	i	=	2
Traceback	(most	recent	call	last):
		File	"<pyshell#5>",	line	1,	in	<module>
				next(gen)
StopIteration

Generator	Syntax

The	syntax	for	writing	a	generator	is	the	same	as	for	functions,	except	the	body
of	the	generator	uses	yield	statements	in	the	function	body,	and	cannot	return	a
value.	The	syntax	for	a	yield	statement	is

yield	value

Semantics

Calling	the	function	does	not	execute	the	body,	but	returns	an	iterator.	Calling	
next	on	that	iterator	will	begin	executing	the	function	body,	stopping	at	the	first
yield	statement	and	returning	the	associated	value.	Subsequent	uses	of	next
resumes	from	the	point	where	the	function	body	was	stopped.	StopIteration	is
raised	when	the	function	body	ends.

List	Comprehensions
We	already	know	how	to	construct	lists	out	of	other	iterables,	using	loops	and
append.	For	example,	if	we	have	a	file	containing	a	collection	of	numbers,	such	as	the	
data1.txt	file,	and	we	want	to	read	in	the	numbers	into	a	list,	then	we	would	do
something	like	this:

f	=	open('data1.txt',	'r')
data	=	[]
for	line	in	f:
				data.append(float(line))
f.close()

For	what	is	arguably	a	simple	operation,	it	takes	a	few	lines	of	code,	and	it	might	not
be	immediately	obvious	what	it	does.	There	is	a	way	of	doing	the	same	thing	with	a
better	syntax,	called	a	list	comprehension:

f	=	open('data1.txt',	'r')

data	=	[float(line)	for	line	in	f]
f.close()

This	syntax	is	much	easier	to	type	and	read,	and	it	is	more	efficient.	What	if	we
wanted	to	ignore	certain	lines	in	the	dataset?	For	example,	if	there	are	blank	lines	in
the	file,	we	want	to	skip	those	lines	and	not	attempt	to	add	float(line)	to	the	list.	We
can	ignore	the	unwanted	values	by	adding	an	if	test	to	the	comprehension,	as	shown
below.

f	=	open('data1.txt',	'r')
data	=	[float(line)	for	line	in	f	if	line]
f.close()

Recall	that	if	line	is	equivalent	to	if	line	!=	"".	Below	are	three	more	examples	of	list
comprehension	in	action.	In	the	first,	we	simply	copy	the	list	l.	In	the	second	we
produce	the	list	of	squares	of	l	and	in	the	third	we	produce	the	list	of	squares	of	the
even	elements	of	l.	The	last	example	is	more	complex,	it	shows	how	comprehensions
can	be	used	to	generate	a	list	of	prime	numbers.

>>>	l	=	list(range(10))
>>>	l
[0,	1,	2,	3,	4,	5,	6,	7,	8,	9]
>>>	[i	for	i	in	l]
[0,	1,	2,	3,	4,	5,	6,	7,	8,	9]
>>>	[i*i	for	i	in	l]
[0,	1,	4,	9,	16,	25,	36,	49,	64,	81]
>>>	[i*i	for	i	in	l	if	i	%	2	==	0]
[0,	4,	16,	36,	64]
>>>	[i	for	i	in	range(2,50)	if	0	not	in	[i	%	j	for	j	in	range(2,i)]]
[2,	3,	5,	7,	11,	13,	17,	19,	23,	29,	31,	37,	41,	43,	47]

A	list	comprehension	can	handle	more	than	one	nested	loop.	The	first	two	examples
below	are	shown	as	both	a	loop	and	a	comprehension.

>>>	nums	=	[1,	2,	3]
>>>	letters	=	"spam"
>>>	
>>>	pairs	=	[]
>>>	for	i	in	letters	:
								for	j	in	nums	:
												pairs.append((i,	j))

>>>	pairs
[('s',	1),	('s',	2),	('s',	3),	('p',	1),	('p',	2),	('p',	3),	('a',	1),	('a',	2),	
('a',	3),	('m',	1),	('m',	2),	('m',	3)]
>>>	pairs	=	[(i,	j)	for	i	in	letters	for	j	in	nums]
>>>	pairs
[('s',	1),	('s',	2),	('s',	3),	('p',	1),	('p',	2),	('p',	3),	('a',	1),	('a',	2),	
('a',	3),	('m',	1),	('m',	2),	('m',	3)]
>>>	sums	=	[]
>>>	for	i	in	range(5)	:
								if	i	%	2	==	0	:
												for	j	in	range(4)	:
																sums.append(i+j)

>>>	sums
[0,	1,	2,	3,	2,	3,	4,	5,	4,	5,	6,	7]
>>>	[i+j	for	i	in	range(5)	if	i	%	2	==	0	for	j	in	range(4)]
[0,	1,	2,	3,	2,	3,	4,	5,	4,	5,	6,	7]
>>>	[i+j+k+l	for	i	in	'01'	for	j	in	'01'	for	k	in	'01'	for	l	in	'01']
['0000',	'0001',	'0010',	'0011',	'0100',	'0101',	'0110',	'0111',	'1000',	'1001',	
'1010',	'1011',	'1100',	'1101',	'1110',	'1111']

List	Comprehension	Syntax

The	syntax	for	list	comprehension	takes	one	of	the	following	forms:

[expression	for	var	in	iterable]
[expression	for	var	in	iterable	if	test]

In	general,	there	can	be	any	number	of	“for	var	in	iterable”	forms	used	as
shown	below,	and	each	one	may	have	an	optional	“if	test”	after	it.

[expression	for	var1	in	iterable1	for	var2	in	iterable2	for	var3	in	iterable3	
...]
[expression	for	var1	in	iterable1	if	test1	for	var2	in	iterable2	if	test2	
...]

Semantics

The	comprehension	is	equivalent	to	constructing	a	list	using	for-loops	and	if
statements.

If	there	is	only	one	iterable	(the	first	two	forms	above),	set	var	to	each	element
of	iterable	and	evaluate	expression	and	add	it	to	the	list.	If	there	is	an	if	test,
then	include	only	those	expressions	where	the	test	is	True.

If	there	are	multiple	iterables,	then	it	is	equivalent	to	nested	for-loops,	where	
for	var1	in	iterable1	is	the	outermost	loop.

We	can	also	use	a	similar	notation	to	that	of	list	comprehension	to	create	generators
using	generator	expressions,	simply	by	replacing	the	square	brackets	in	the	list
comprehension	by	round	brackets	().	All	of	the	examples	of	list	comprehensions
above	can	be	turned	into	generator	expressions	by	using	round	brackets.	Often	the
result	of	a	comprehension	will	be	iterated	over,	and	using	a	generator	expression	in
this	situation	is	more	efficient.	Below	is	an	example.

>>>	gen	=	(i*i	for	i	in	range(10))
>>>	next(gen)
0
>>>	next(gen)
1
>>>	next(gen)
4
>>>	next(gen)

9

Aside:	More	Comprehensions

There	are	also	two	other	types	of	comprehensions	in	Python.	One	is	the
dictionary	comprehension,	which	can	be	used	to	make	a	dictionary,	using	{}
braces	instead	of	[]	brackets,	as	well	as	a	key:	value	expression.

>>>	{i:	i*i	for	i	in	range(10)}
{0:	0,	1:	1,	2:	4,	3:	9,	4:	16,	5:	25,	6:	36,	7:	49,	8:	64,	9:	81}
>>>	x	=	'CSSE1001'
>>>	{c:	x.count(c)	for	c	in	x}
{'1':	2,	'0':	2,	'C':	1,	'E':	1,	'S':	2}
>>>	{i:	x	for	i,	x	in	enumerate(x)}
{0:	'C',	1:	'S',	2:	'S',	3:	'E',	4:	'1',	5:	'0',	6:	'0',	7:	'1'}

Another	is	the	set	comprehension.	A	set	is	a	data	type	that	represents	an
unordered	collection	of	unique	elements.	They	are	efficient	at	checking	whether
or	not	an	element	is	in	a	collection.	Here	are	some	examples	of	sets	and	set
comprehensions:

>>>	s	=	{2,	4,	6,	8,	6,	10}
>>>	s
{8,	10,	4,	2,	6}
>>>	4	in	s
True
>>>	5	in	s
False
>>>	{c	for	c	in	'CSSE1001'}
{'1',	'0',	'C',	'E',	'S'}
>>>	{i*i	for	i	in	range(10)}
{0,	1,	4,	81,	64,	9,	16,	49,	25,	36}

Higher-Order	Functions
Now	that	we	have	seen	iterators,	list	comprehension	and	generators	we	return	to
functional	programming.	Let’s	say	that	we	have	two	very	similar	functions	in	our
code.	The	first	sums	all	the	elements	in	a	list,	the	second	multiplies	them.	(There	is
already	a	built-in	sum	function,	for	the	purposes	of	this	section,	we	will	ignore	it	and
write	our	own.)

def	my_sum(lst)	:
				result	=	0
				for	x	in	lst	:
								result	+=	x
				return	result

def	product(lst)	:
				result	=	1
				for	x	in	lst	:

https://docs.python.org/3/library/functions.html#sum

								result	*=	x
				return	result

At	the	start	of	this	course,	we	learnt	to	abstract	similar	code	so	that	it	does	not	need
to	be	repeated,	and	turn	the	slight	differences	into	parameters	of	the	function,	so	we
should	be	able	to	perform	the	same	process	here,	and	abstract	these	functions	into	a
“combine”	function	which	reduces	a	list	into	one	value.

There	are	two	extra	arguments	that	the	combine	function	needs:	an	initial	value	to	set	
result	to,	and	an	operation	to	combine	elements	with.	A	way	that	we	can	do	this	is	to
use	a	function	as	a	parameter	which	represents	the	operation	to	perform	on	result
and	x.	Now	we	can	write	the	abstracted	function.

def	combine(operation,	lst,	initial)	:
				result	=	initial
				for	x	in	lst	:
								result	=	operation(result,	x)
				return	result

This	function	is	different	to	ones	we	have	seen	before,	since	the	operation	parameter	is
actually	another	function.	A	function	which	uses	other	functions	in	the	parameter	or
return	values,	such	as	combine,	is	called	a	higher-order	function.	We	have	seen	this
before,	when	creating	tkInter	Button	widgets:	Button(frame,	command=function),	and
using	the	bind	method:	widget.bind("<Button-1>",	function).	Notice	that	what	is	really
happening	here	is	that	the	function	is	being	treated	as	an	object	that	can	be	used	in
the	function	call.	Not	all	programming	languages	offer	the	ability	to	do	this,	but	it	is
still	very	useful.

Anonymous	Functions
So	how	do	we	use	the	combine	function?	If	we	want	to	sum	a	list	of	numbers,	we	can	do
this:

>>>	lst	=	[2,	4,	1,	5,	3]
>>>	def	add(x,	y)	:
								return	x	+	y
>>>	combine(add,	lst,	0)
15

It	works!	But,	that	seems	like	a	lot	of	effort,	having	to	define	an	addition	function	just
so	that	the	combine	function	works.	Then	for	every	other	operation,	we	would	need
another	trivial	function	definition	just	so	that	the	combine	function	can	use	it.	It
would	be	helpful	if	there	was	a	way	of	specifying	simple	functions	without	needing	to
write	a	def	statement.	Functions	like	this	are	called	anonymous	functions.	The
Python	syntax	to	write	an	anonymous	function	is	called	a	lambda	form.	The	name
lambda	comes	from	the	Lambda	Calculus	upon	which	functional	languages	are	built.
The	equivalent	of	the	add	function	above	is	just:

lambda	x,	y:	x	+	y

https://en.wikipedia.org/wiki/Lambda_calculus

Here	it	is	used	with	combine.	Some	more	examples	of	lambda	expressions	are	shown
below.

>>>	combine(lambda	x,y:	x+y,	lst,	0)
15
>>>	double	=	lambda	x:	2*x
>>>	double
<function	<lambda>	at	0x011F2270>
>>>	double(3)
6
>>>	double(8)
16
>>>	multiply	=	lambda	x,y:	x	*	y
>>>	multiply(3,	4)
12
>>>	multiply(2,	'abc')
'abcabc'
>>>	zero	=	lambda:	0
>>>	zero
<function	<lambda>	at	0x011F22F0>
>>>	zero()
0

Lambda	Expression	Syntax

The	syntax	for	a	lambda	form	is:

lambda	arg1,	arg2,	...:	expression

There	may	be	zero	or	more	args.

Semantics

The	lambda	form	is	a	function	which	can	be	treated	as	an	expression.	This
means	it	can	be	assigned	to	variables,	used	in	function	calls	and	return	values,
or	used	in	larger	expressions.	It	is	often	used	as	a	way	of	defining	simple
functions	instead	of	using	the	def	statement.	It	is	equivalent	to	the	function
definition	below,	except	that	the	lambda	expression	does	not	have	the	name	f.

def	f(arg1,	arg2,	...)	:
				return	expression

Note	that	the	only	thing	a	lambda	function	can	do	is	evaluate	and	return	an
expression.	A	function	that	requires	loops	or	large	blocks	of	code	should	be
created	using	a	def	statement.

As	a	final	thought,	we	can	redefine	the	original	my_sum	and	product	functions	using	
combine,	and	specifying	what	the	operation	and	initial	value	are.	The	third	concat
function	concatenates	a	list	of	strings	into	one	string.	As	a	challenge,	try	thinking	of

other	operations	that	can	be	used	with	combine.

def	my_sum(lst)	:
				return	combine(lambda	x,y:	x+y,	lst,	0)

def	product(lst)	:
				return	combine(lambda	x,y:	x*y,	lst,	1)

def	concat(strings)	:
				return	combine(lambda	x,y:	x+y,	strings,	'')

These	examples	can	be	downloaded,	including	the	original	definitions	of	my_sum,	
product	and	combine:	higher_order.py

Aside:	reduce	and	operator

The	combine	function	is	a	very	useful	function,	so	it	is	no	surprise	that	there	is	a
Python	library	for	functional	programming	(called	functools),	which	has	a
function	that	does	the	same	thing,	called	functools.reduce.	In	functional
programming	languages,	this	operation	is	known	as	a	fold.

The	most	common	use	of	reduce	is	with	operations	like	+	and	*,	so	it	would	be
nice	to	have	these	as	functions	instead	of	having	to	write	lambda	x,y:	x+y.	The
operator	module	provides	many	operators	as	functions.	Try	import	operator.

Returning	Functions
Another	form	of	higher-order	functions	are	those	that	return	a	function.	Imagine	a
situation	with	lots	of	similar	incrementing	functions:

def	add1(x)	:
				return	x	+	1

def	add5(x)	:
				return	x	+	5

def	add10(x)	:
				return	x	+	10

We	want	to	abstract	these,	but	in	particular	we	want	to	write	a	function	that	takes	a
number	n	(like	1,	5	or	10),	and	gives	back	a	function	that	adds	n.	A	function	that	adds	
n	to	its	input	x	is	simply:

lambda	x:	x	+	n

Then	this	lambda	expression	is	what	we	must	return.	The	“add	n”	function	is	shown
below	with	examples.

https://docs.python.org/3/library/operator.html

def	add_n(n)	:
				return	lambda	x:	x	+	n

>>>	add_n(3)(4)
7
>>>	add_n(1)(2)
3
>>>	add1	=	add_n(1)
>>>	add5	=	add_n(5)
>>>	add10	=	add_n(10)

Another	way	to	think	of	this	is	as	a	partial	application,	because	when	we	call	the	
add_n	function,	we	are	not	giving	it	all	the	information	it	needs	to	work	out	an	answer.
So	instead,	add_n	gives	back	another	function	which	waits	for	the	remaining	input.

Itertools
We	have	seen	some	of	the	potential	of	using	iterators	and	generators.	Python	includes
a	module	called	itertools	that	contains	a	variety	of	useful	iterators.	Here	we	will
briefly	explore	some	of	these.	There	are	more	details	in	the	Python	documentation.

>>>	from	itertools	import	count

The	count	function	returns	an	iterator	that	counts	numbers	from	a	given	starting
number	(or	0	if	no	number	is	given).

>>>	c	=	count(2)
>>>	next(c)
2
>>>	next(c)
3
>>>	next(c)
4
>>>	next(c)
5

map	applies	a	function	to	each	value	in	an	iterable.	In	the	first	example	below,	it	uses	a
squaring	function	on	the	values	of	count(1)	which	has	the	effect	of	making	an	iterator
of	square	numbers.	filter	applies	a	test	to	each	value	in	the	iterable,	and	only	gives
back	the	values	that	pass	the	test.	In	the	second	example	below,	only	the	numbers
which	satisfy	x%2	==	0	are	allowed.	The	third	example	shows	a	combination	of	both	a
filter	and	a	map.

>>>	squares	=	map(lambda	x:x*x,	count(1))
>>>	next(squares)
1
>>>	next(squares)
4
>>>	next(squares)
9
>>>	evens	=	filter(lambda	x:	x%2	==	0,	count(1))
>>>	next(evens)
2
>>>	next(evens)

https://docs.python.org/3/library/itertools.html

4
>>>	next(evens)
6
>>>	even_squares	=	map(lambda	x:x*x,	filter(lambda	x:	x%2	==	0,	count(1)))
>>>	next(even_squares)
4
>>>	next(even_squares)
16
>>>	next(even_squares)
36
>>>	x	=	"This	is	a	short	sentence"
>>>	list(map(lambda	x:(x,	len(x)),	x.split()))
[('This',	4),	('is',	2),	('a',	1),	('short',	5),	('sentence',	8)]

The	product,	permutations,	combinations	and	combinations_with_replacement	functions
provide	the	Cartesian	product	and	other	combinatoric	selections	of	elements.

>>>	from	itertools	import	product,	permutations,	combinations,	
combinations_with_replacement
>>>	list(product('ABC',	'123'))
[('A',	'1'),	('A',	'2'),	('A',	'3'),	('B',	'1'),	('B',	'2'),	('B',	'3'),	('C',	
'1'),	('C',	'2'),	('C',	'3')]
>>>	[''.join(x)	for	x	in	product('01',	repeat=3)]
['000',	'001',	'010',	'011',	'100',	'101',	'110',	'111']
>>>	list(permutations((1,	2,	3)))
[(1,	2,	3),	(1,	3,	2),	(2,	1,	3),	(2,	3,	1),	(3,	1,	2),	(3,	2,	1)]
>>>	list(combinations((1,	2,	3),	2))
[(1,	2),	(1,	3),	(2,	3)]
>>>	list(combinations_with_replacement((1,	2,	3),	2))
[(1,	1),	(1,	2),	(1,	3),	(2,	2),	(2,	3),	(3,	3)]

To	finish	this	section	we	give	two	more	advanced	examples	using	this	module.

Adding	Line	Numbers

For	the	first	example	we	want	to	write	a	function	that	takes	a	text	file	as	input	and
prints	out	the	contents	of	the	file	with	each	line	prepended	with	the	line	number.
Here	is	the	code	(add_linenum.py).

import	sys
import	itertools

in_file	=	sys.argv[1]

f	=	open(in_file,	'r')

for	line	in	map("{0:4d}:	{1}".format,	count(1),	f):
				print(line,	end="")

f.close()

This	program	is	designed	to	be	run	from	the	command	line	as	follows:

python	add_linenum.py	name_of_text_file

The	sys	module,	among	other	things,	provides	a	mechanism	to	access	the	arguments
of	the	command.	The	attribute	argv	is	the	list	of	arguments.	The	0’th	argument	is	the
name	of	the	command	itself	(in	this	case	add_linenum.py)	and	the	first	argument	is	the
name	of	the	file	we	want	processed.	The	first	step	is	to	open	the	file.	Now	f	is	a
generator	and	so	we	can	use	the	iterator	functions	on	it.	We	use	map	with	three
arguments:	a	function	that	takes	two	arguments	and	two	iterators.	The	result	will	be
an	iterator	that	uses	the	function	to	pairwise	combine	the	contents	of	the	two	input
iterators.	Note	that,	by	using	the	infinite	iterator	count	we	do	not	have	to	go	to	the
trouble	of	constructing	some	list	that	has	the	same	length	as	the	contents	of	the	file.

Sieve	of	Eratosthenes

The	final	example	is	to	implement	the	Sieve	of	Eratosthenes	for	computing	the	list	of
prime	numbers	using	generators.	This	is	a	very	complicated	but	dramatic	example	of
the	power	of	lazy	evaluation	(using	generators)!	Here	is	the	code	(sieve.py).

import	itertools

def	isnotdiv(p)	:
				return	lambda	v:	(v	%	p)	!=	0

def	primes()	:
				ints	=	itertools.count(2)
				while	True	:
								prime	=	next(ints)
								yield	prime
								ints	=	filter(isnotdiv(prime),	ints)

>>>	prime	=	primes()
>>>	next(prime)
2
>>>	next(prime)
3
>>>	next(prime)
5

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

