
Our	two	weapons	are	fear	and	surprise…and	ruthless	efficiency

Complexity	and	Computability
Efficiency
It	is	not	enough	to	write	a	program	that	works	correctly,	the	program	must	also	be
efficient.	What	makes	a	program	efficient?	There	are	two	types	of	efficiency	that	we
consider	in	software	development:	time	(how	fast	the	program	runs)	and	space	(how
much	of	the	computer’s	memory	is	being	used).

Writing	fast	software	is	important	because	users	will	be	less	satisfied	if	a	program	is
slow.	Writing	software	that	uses	minimal	space	is	important	because	computers	have
limited	resources.	In	this	section,	we	will	discuss	time	efficiency,	but	similar
techniques	can	be	applied	to	work	out	space	efficiency.

How	different	can	two	programs	be	in	time	efficiency?	Let’s	look	at	an	example
involving	the	Fibonacci	sequence,	which	is	a	sequence	of	numbers	defined	as:

fib(0)	=	0
fib(1)	=	1
fib(n)	=	fib(n-1)	+	fib(n-2)	for	n	>	1

This	recursive	definition	can	be	directly	translated	into	a	recursive	function	in	Python
as	follows.

def	fibonacci1(n:	int)	->	int:
				if	n	==	0:
								return	0
				elif	n	==	1:
								return	1
				else:
								return	fibonacci1(n-1)	+	fibonacci1(n-2)

>>>	for	i	in	range(10):	print(fibonacci1(i),	end="	")

0	1	1	2	3	5	8	13	21	34	

It	turns	out	that	this	direct	translation	does	not	produce	a	very	efficient	algorithm
because	we	end	up	recomputing	Fibonacci	numbers	over	and	over	again.	We	can	do
much	better	by	keeping	track	of	the	previous	two	Fibonacci	numbers	and	that	leads
to	the	solution	below.

def	fibonacci2(n:	int)	->	int:
				fib1	=	0
				fib2	=	1
				for	i	in	range(n)	:
								#	loop	invariant:	a	is	the	i'th	fib	and	b	is	the	(i+1)'th	fib
								fib1,	fib2	=	fib2,	fib1+fib2
				return	fib1



These	functions	are	in	fib.py.	We	have	also	included	functions	to	determine	the
runtime	of	the	two	Fibonacci	functions	using	the	time	module.	Let’s	run	them	to	see
the	results:

>>>	time_fib1(30)
fibonacci1(30)	took	309.849	ms
>>>	time_fib1(31)
fibonacci1(31)	took	455.199	ms
>>>	time_fib1(32)
fibonacci1(32)	took	763.001	ms

We	would	like	to	analyse	these	results,	and	estimate	the	running	time	of	fibionacci1(n)
for	large	values	of	n.	How	does	the	running	time	change	when	we	increase	n	by	1?

>>>	455.199/309.849
1.469099
>>>	763.001/455.199
1.676192

It	turns	out	that	if	we	compute	fibionacci1(n+1),	the	time	taken	is	about	1.6	times	the
time	it	takes	to	compute	fibionacci1(n).	From	this,	we	can	determine	that	the	time	to
compute	fibionacci1(n+10)	is	a	little	over	100	times	the	time	to	compute	fibionacci1(n).

>>>	1.6**10
109.95116277760006

How	long	will	it	take	to	compute	fibionacci1(40)?	We	estimate	that	it	would	take	
1.6**10	*	309.849	ms,	which	is	about	34	seconds.	Extrapolating	further,	we	find	that	
fibionacci1(50)	would	take	just	over	one	hour,	and	fibionacci1(100)	would	take	over
1,900,000	years!	On	the	other	hand	we	get	the	following	for	the	second	algorithm.

>>>	time_fib2(30)
fibonacci2(30)	took	0.000	ms
>>>	time_fib2(10000)
fibonacci2(30000)	took	31.215	ms
>>>	time_fib2(30000)
fibonacci2(300000)	took	709.301	ms

Note	that	the	dramatic	difference	is	not	because	one	is	recursive	and	one	is	not	—	if
we	rewrote	the	second	algorithm	as	a	recursive	function,	it	would	still	be	very
efficient.

Note	also	that	the	exact	running	times	will	be	different	when	it	is	run	on	different
processors,	in	different	programming	languages,	etc.	However,	the	resulting	analysis
will	still	be	the	same,	that	as	n	increases,	the	running	time	increases	by	a	factor	of
about	1.6.

Measuring	Efficiency



In	the	above	analysis,	we	have	seen	how	to	estimate	the	running	time	of	the	
fibionacci1	function	for	certain	values	of	n.	We	would	like	to	make	this	more	general
and	describe	the	efficiency,	called	the	complexity,	of	fibionacci1	so	that	it	can	be
compared	to	other	functions.	Since	the	exact	running	time	can	differ,	we	will	instead
describe	how	the	running	time	grows	with	larger	inputs,	without	having	to	worry
about	exact	details.

From	the	analysis	above,	we	see	that	the	running	time	of	fibionacci1(n)	is	related	to
1.6n.	In	fact,	the	only	important	information	is	that	the	running	time	is	exponential	in	
n.	The	1.6	is	not	important,	and	the	complexity	could	equally	be	described	as	2n	or	en

(it	is	common	to	use	either	of	these	to	describe	exponential	functions).

Before	continuing,	we	need	a	notation	that	we	can	use	to	mean	that	we	do	not	care
about	the	exact	details.

Big	O	Notation
The	big	O	notation	is	used	to	provide	an	upper	bound	on	a	mathematical	function.
Formally,	we	say	that	“f(n)	is	of	order	g(n)”,	and	write	“f(n)	is	O(g(n))”,	if	there	are
constants	a	and	k	such	that	f(n)≤a×g(n)	for	all	n	>k.	Informally,	f(n)	is	of	order	g(n)	if
some	multiple	of	g(n)	is	an	upper	bound	of	f(n).

It	is	common	to	use	only	the	most	significant	term	when	describing	the	order	of	a
function,	and	to	ignore	any	coefficients.	For	example,	3n^2+4n-2	is	O(n^2),
2n^2+8n	is	also	O(n^2),	and	3^n+n^2	is	O(2^n).

Big	O	notation	is	used	to	describe	the	complexity	of	a	program,	where	n	represents
the	size	of	the	input.	For	example,	the	running	time	of	fibionacci1	is	O(2^n).

A	complexity	class	is	a	collection	of	functions	with	the	same	complexity	(when
expressed	in	the	big	O	notation).	Some	of	the	common	complexity	classes	are:

Complexity Common	Name
O(1) Constant
O(log	n) Logarithmic
O(n) Linear
O(n^2) Quadratic
O(2^n) Exponential

Once	the	complexity	of	a	function	is	known,	we	can	compare	it	to	the	complexity	of
other	functions.	In	the	table	above,	we	have	listed	the	classes	from	the	most	efficient
(constant)	to	the	least	efficient	(exponential).	When	designing	algorithms	we	strive	for
the	most	efficient	algorithm.

Calculating	Rate	of	Growth
How	can	we	determine	the	complexity	of	a	function?	Instead	of	performing	an
experimental	analysis,	we	can	directly	analyse	the	source	code.	In	practice	this	can	be
quite	difficult,	so	we	will	consider	several	examples.	In	our	analysis,	we	will	think
about	how	many	steps	the	function	takes	to	complete	if	it	were	executed.	Looking	at
how	many	times	a	loop	body	is	executed,	or	how	many	recursive	calls	are	needed	to
reach	the	base	case,	will	give	a	good	indication	of	the	complexity.

Constant	Time

A	function	that	runs	in	constant	time	—	O(1)	—	cannot	have	any	loops	or	recursive
steps	which	depend	on	the	size	of	the	input.	The	defining	characteristic	of	constant
time	functions	is	that	changing	the	size	of	the	input	has	no	effect	on	the	running	time.



For	example,	these	functions	run	in	constant	time:

def	square(n:	int)	->	int:
				return	n**2

def	abs(n:	int)	->	int:
				if	n	>	0:
								return	n
				else	:
								return	-n

Linear	Time

A	function	runs	in	linear	time	—	O(n)	—	if	the	number	of	iterations	of	loops	in	the
function	is	proportional	to	the	size	of	the	input	(and	the	body	of	the	loops	run	in
constant	time).	A	characteristic	to	observe	in	linear-time	functions	is	that	doubling
the	size	of	the	input	makes	the	function	twice	as	slow.	Below	are	examples	of
functions	that	run	in	linear	time.

def	find(char:	str,	string:	str)	->	int:
				for	i,	c	in	enumerate(string):
								if	c	==	char:
												return	i
				return	-1

def	sumto(n:	int)	->	int:
				total	=	0
				i	=	0
				while	i	<=	n:
								total	+=	i
								i	+=	1
				return	total

It	is	important	to	specify	what	inputs	determine	the	complexity	of	the	function.	The	
find	function	above	is	linear	in	terms	of	the	length	of	the	string,	and	the	sumto	function
is	linear	in	terms	of	the	input	n.

A	recursive	function	runs	in	linear	time	if	the	number	of	recursive	steps	to	the	base
case	is	proportional	to	the	size	of	the	input.	The	factorial	function	below	must	make	a
total	of	n	recursive	steps,	so	its	running	time	is	O(n).

def	factorial(n:	int)	->	int:
				if	n	==	0:
								return	1
				else:
								return	factorial(n-1)	*	n

Quadratic	Time

A	characteristic	of	quadratic	time	—	O(n^2)	—	functions	is	that	doubling	the	size	of
the	input	makes	the	running	time	four	times	as	large.	Many	functions	that	run	in
quadratic	time	have	two	nested	loops,	where	the	number	of	iterations	in	each	loop	is
proportional	to	the	size	of	the	input.	The	following	functions	run	in	quadratic	time.



def	pairs(lst):
				result	=	[]
				for	element1	in	lst:
								for	element2	in	lst:
												result.append((element1,	element2))
				return	result
def	primes_to(n:	int)	->	list[int]:
				"""Return	a	list	of	primes	<=	n."""
				primes	=	[]
				for	i	in	range(2,	n+1):
								is_prime	=	True
								for	j	in	range(2,	i):
												if	i	%	j	==	0:
																is_prime	=	False
								if	is_prime:
												primes.append(i)
				return	primes

The	pairs	function	runs	in	O(n^2)	time	where	n	is	the	length	of	the	list.	This	is
because	the	inner	loop	takes	n	steps	to	run,	which	is	then	repeated	n	times	by	the
outer	loop.

The	primes_to	function	is	slightly	different.	The	outer	loop	runs	n-1	times,	which	is
O(n).	The	inner	loop	runs	i-2	times,	but	i	takes	a	different	value	on	each	iteration,	so
how	do	we	represent	the	running	time	in	terms	of	n?

If	we	sum	up	the	number	of	iterations	of	the	inner	loop,	we	get	0+1+2+3+⋯+(n-3)=
(n-3)(n-2)⁄2,	which	is	quadratic.	A	less	formal	reasoning	would	be	that	i	averages	to
about	n⁄2	over	all	iterations	of	the	outer	loop,	so	the	total	running	time	is	about	n^2⁄2,
which	is	quadratic.

Logarithmic	Time

The	defining	characteristic	of	logarithmic	—	O(log(n))	—	functions	is	that	doubling	the
input	size	will	only	increase	the	running	time	by	a	fixed	amount.	A	way	of	recognising
a	logarithmic	function	is	that	at	each	step	through	the	function,	the	“remaining
problem”	will	be	reduced	by	a	significant	factor.	For	example,	consider	the	following
function,	which	computes	the	binary	digits	of	a	number,	starting	with	the	least
significant.

def	binary(number:	int)	->	list[int]:
				result	=	[]
				while	number	>	0:
								if	number	%	2	==	0:
												result.append(0)
								else:
												result.append(1)
								number	/=	2
				return	result

Notice	that	each	step	through	the	loop	halves	the	number,	which	halves	the	size	of	the
remaining	problem.	Because	of	this,	the	binary	function	runs	in	O(log(n))	time.

Two	of	the	methods	in	the	Node	class	from	the	module	about	recursion	are	also
logarithmic:	the	insert	and	__contains__	methods	both	make	a	recursive	call	into	one	of
the	two	children	of	the	node.	In	effect,	this	(roughly)	halves	the	size	of	the	“remaining
problem”,	which	is	the	number	of	nodes	that	still	need	to	be	considered.	Because



binary	search	trees	have	very	efficient	insert	and	__contains__	methods,	they	can	be
very	useful	ways	of	storing	data.

This	only	holds	true	if	the	tree	is	balanced,	that	is,	if	each	node	in	the	tree	has	a
roughly	equal	distribution	of	nodes	in	the	left	and	right	subtrees.	The	other	possible
extreme	is	that	each	node	in	the	tree	has	only	one	child,	then	the	tree	behaves	more
like	a	consecutive	list	of	values,	and	insert	and	__contains__	will	run	in	linear	time,	and
the	tree	will	no	longer	be	a	useful	way	of	storing	data.	For	this	reason,	many	forms	of
self-balancing	binary	search	trees	have	been	developed,	which	ensure	they	remain
balanced	when	data	is	inserted	or	removed.

Exponential	Time

An	example	of	a	function	which	runs	in	exponential	time	—	O(2^n)	—	is	the	
fibionacci1	function	from	above	(which	is	available	in	fib.py).	This	function	is
exponential	because	there	are	two	recursive	calls	made	in	the	recursive	step.	The
effect	of	this	is	that	when	the	input	n	increases	by	1,	our	function	needs	to	do	nearly
twice	as	many	steps	(more	accurately,	1.6	times	as	many	steps)	to	compute	a	result.

The	important	characteristic	of	exponential	time	functions	is	that	increasing	the	input
size	by	1	will	multiply	the	running	time	by	a	factor.

Aside:	Things	aren’t	as	they	seem…

Though	it	may	seem	obvious	that	a	function	appears	to	have	a	certain	time
complexity,	other	factors	can	come	into	the	running	time	as	well.	If	we	analyse
the	efficient	Fibonacci	algorithm	it	appears	to	be	linear.	However,	if	we	do	the
timing	experiment	we	see	that	it	is	not	linear.	It	turns	out	that	Fibonacci
numbers	get	very	big	very	quickly	and	so	the	time	taken	to	add	two	adjacent
Fibonacci	numbers	becomes	significant	—	and	has	to	be	factored	into	the
calculations.	It	appears	from	timing	experiments	that,	for	very	large	n,	doubling
n	will	make	the	time	go	up	by	about	a	factor	of	3	—	so	the	complexity	is	worse
than	linear	but	better	than	quadratic.

Functions	within	Functions
How	is	the	complexity	of	a	function	affected	when	it	calls	other	functions?	If	a
function	calls	another	function,	the	complexity	of	that	other	function	will	have	an
impact	on	the	complexity	of	the	first	function.	As	an	example,	consider	these	two
functions:

def	factorial(n:	int)	->	int:
				if	n	==	0:
								return	1
				else:
								return	factorial(n-1)	*	n

def	sum_factorial(n:	int)	->	int:
				"""	Return	1!	+	2!	+	...	+	n!	-	i.e.	the	sum	of	the	factorials	up	to	n."""
				sum	=	0
				m	=	1
				while	m	<=	n:
								sum	+=	factorial(m)
								m	+=	1
				return	sum



We	already	know	that	the	factorial	function	runs	in	O(n)	time,	but	what	about	the	
sum_factorial	function?	In	the	loop,	m	starts	at	1	and	increments	until	it	gets	to	n.
However,	this	does	not	make	it	a	linear	algorithm	because	the	body	of	the	loop
contains	a	call	that	is	linear	in	m.	So	the	time	taken	is	proportional	to	1+2+3+⋯+n=
(n×(n+1))⁄2	—	making	the	function	quadratic.

What	about	when	we	are	using	other	functions	that	we	did	not	write?	Without
knowing	the	complexity	of	other	functions,	we	cannot	determine	the	running	time	of
our	own	programs.	If	the	source	code	is	available,	we	could	analyse	it	as	above.	The
author	of	the	other	code	may	have	included	information	about	the	time	and	space
complexities	in	the	documentation.	This	would	be	very	helpful,	especially	if	we	do	not
have	access	to	the	source	code.	Alternatively,	we	could	carry	out	timing	experiments,
as	we	did	with	fibionacci1,	to	deduce	the	complexity.

The	complexity	of	standard	Python	functions	and	operations	also	needs	to	be
considered.	What	is	the	complexity	of	the	built-in	functions	and	methods,	such	as	sum,	
min,	or	list.append?	What	about	list	addition?	Or	string	addition?

The	code	in	list_time.py	will	experimentally	determine	the	running	time	of	many	list
operations.	Below	are	some	results	(each	command	was	repeated	1000	times,	the
results	were	averaged,	and	are	measured	in	microseconds).

xs.append(0):
		list	of	length	10000:	0.8640663673243391	us
		list	of	length	20000:	0.9903276535270789	us
		list	of	length	40000:	1.578083090180371	us
xs[0]:
		list	of	length	10000:	0.3674386415868369	us
		list	of	length	20000:	0.6851047181877234	us
		list	of	length	40000:	0.684738743433666	us
xs[-1]:
		list	of	length	10000:	0.3872012777055289	us
		list	of	length	20000:	0.7191403692736742	us
		list	of	length	40000:	0.8018506610625309	us
xs[0:100]:
		list	of	length	10000:	1.2208917414007203	us
		list	of	length	20000:	1.7446015980686624	us
		list	of	length	40000:	1.8748886064123838	us
xs[0:10000]:
		list	of	length	10000:	53.55271811269802	us
		list	of	length	20000:	57.665908245043696	us
		list	of	length	40000:	62.512145786778106	us
xs[1:-1]:
		list	of	length	10000:	54.147427069450416	us
		list	of	length	20000:	112.26568009637639	us
		list	of	length	40000:	230.8202701698896	us
xs.insert(0,	0):
		list	of	length	10000:	8.216132971785584	us
		list	of	length	20000:	15.295182418274322	us
		list	of	length	40000:	29.147692401203074	us
xs.pop(0):
		list	of	length	10000:	6.027604010938603	us
		list	of	length	20000:	12.176711636406878	us
		list	of	length	40000:	22.701779259406862	us
xs.pop(-1):
		list	of	length	10000:	0.806608332709402	us
		list	of	length	20000:	1.1729490500478335	us
		list	of	length	40000:	1.3764310069532826	us
xs	+	xs:
		list	of	length	10000:	112.45232721501708	us
		list	of	length	20000:	232.56779956593476	us
		list	of	length	40000:	470.1520149288214	us



It	can	be	seen	that	append	and	list	indexing	both	run	in	constant	time	(allowing	for
slight	variations	in	the	running	times).	A	list	slice	runs	in	time	proportional	to	the
length	of	the	slice.	This	means	that	if	a	slice	is	taken	from	the	start	to	the	end	of	the
list,	it	will	take	linear	time	in	terms	of	the	length	of	the	list.	Inserting	to	the	front	of	a
list	runs	in	linear	time,	as	does	list	addition.	The	pop	method	is	somewhat	more
interesting:	it	runs	in	linear	time	if	the	first	element	is	removed,	and	constant	time	if
the	last	element	is	removed.

Note	that	one	consequence	of	this	is	that	inserting	and	removing	from	a	list	is	best
done	from	the	end	of	the	list,	using	append	and	pop(-1),	because	these	are	both
constant,	whereas	the	same	operations	on	the	start	of	the	list	are	slower.	Being	able
to	take	advantage	of	properties	like	this	one	is	an	important	skill	in	software
engineering.

Aside:	Guess	the	implementation

Sometimes	it	can	be	insightful	to	“guess”	what	the	implementation	of	a	function
would	look	like	to	get	a	better	understanding	of	why	the	time	complexity	is
what	it	is,	and	whether	or	not	it	can	be	improved.	For	example,	it’s	not	difficult
to	determine	that	the	sum	function	must	visit	every	element	of	the	list	to
calculate	the	total,	so	sum	must	be	linear,	it	can’t	be	logarithmic	or	constant.

From	the	experiment	above	on	lists,	we	can	guess	that	slicing	and	addition
work	by	copying	all	of	the	required	elements	into	a	new	list,	which	is	why	they
are	linear.	If	inserting	and	removing	from	the	start	of	a	list	runs	in	linear	time,
we	might	guess	that	the	underlying	implementation	needs	to	do	some	extra
work	on	the	rest	of	the	list.	It	may	be	interesting	to	research	two	different
implementations	of	lists:	“arrays”	and	“linked	lists”.

Computability:	The	Halting	Problem
In	the	remainder	of	this	section	we	will	look	at	a	new	topic,	computability	theory,
which	studies	functions	and	algorithms	from	a	mathematical	perspective.	One
question	in	this	field	is	deciding	whether	or	not	a	given	function	will	finish	executing
or	loop	forever.	In	this	section,	we	will	only	consider	functions	that	take	a	single
string	argument.	For	example,	consider	this	function:

def	factorial(number):
				n	=	int(number)
				fact	=	1
				while	n	!=	0:
								fact	*=	n
								n	-=	1
				return	fact

Calling	this	function	with	a	positive	integer,	such	as	factorial('3'),	will	finish
executing.	However,	factorial('-2')	will	never	finish	executing,	as	the	loop	will	never
stop.	Note	that	we	are	considering	if	the	function	will	ever	finish,	even	if	it	takes	a
long	time.	For	example,	factorial('1000000000000')	will	take	a	very	long	time,	but	it	will
still	be	able	to	finish.

We	now	pose	the	problem:	Write	a	program	which	takes	the	source	code	of	a	function
(as	a	string)	and	an	input,	and	determines	whether	or	not	the	function	will	stop
executing.	This	problem	is	known	as	the	halting	problem.	This	would	not	be	an	easy



task,	because	it	would	have	to	handle	every	possible	function	we	could	write.

In	fact,	Alan	Turing	proved	in	1936	that	writing	such	a	program	is	impossible.	This	is
an	alarming	result,	as	it	was	one	of	the	first	problems	where	it	could	be	proved	that	a
solution	could	not	be	found.	Here	we	will	give	a	proof	by	contradiction,	where	we
assume	that	we	can	solve	the	halting	problem,	and	then	prove	that	assumption	leads
to	a	contradiction.

Assume	that	we	have	a	function	halt,	which	takes	the	source	code	of	a	function	(as	a
string),	and	an	input,	and	returns	True	if	the	function	will	finish	when	given	that	input.
The	function	definition	would	look	like	this:

def	halt(code,	input):
				"""Determine	if	the	given	function	'code'	will	finish	executing.

				Parameters:
								code	(str):	Source	code	for	the	function	to	be	analysed.
								input:	The	input	to	be	passed	to	the	function	'code'.

				Return	(bool):
								True	if	the	function	stops	when	given	the	input.
								False	if	the	function	continues	forever	when	given	the	input.
				"""
				#	Solution	goes	here...
				#	...

For	example,	halt(factorial_code,	'3')	is	True	and	halt(factorial_code,	'-2')	is	False,
where	factorial_code	is	the	function	definition	above.	Notice	that,	in	a	proof	by
contradiction,	it	is	enough	to	assume	that	a	working	function	is	available	to	us,	we	do
not	actually	need	to	write	it.	Now,	consider	this	function,	which	takes	a	string	x:

def	g(x):
				if	halt(x,	x):
								while	True:
												print("Keep	going...")
				else:
								print("Stop!")

Now	we	ask,	if	g_code	is	the	source	code	of	the	function	above,	what	does	g(g_code)	do?

If	halt(g_code,	g_code)	is	True,	then	g(g_code)	runs	forever,	meaning	that	
halt(g_code,	g_code)	gave	an	incorrect	result.
If	halt(g_code,	g_code)	is	False,	then	g(g_code)	stops,	meaning	that	halt(g_code,	
g_code)	gave	an	incorrect	result.

This	means	that	our	initial	assumption	that	a	working	halt	function	exists	leads	to	a
contradiction.	Therefore,	it	is	impossible	to	write	a	function	that	will	solve	the	halting
problem.


