
Other	Man:	Well	I’m	very	sorry	but	you	didn’t	pay!

Man:	Ah	hah!	Well	if	I	didn’t	pay,	why	are	you	arguing?

Ah	HAAAAAAHHH!	Gotcha!

Other	Man:	No	you	haven’t!

Man:	Yes	I	have!	If	you’re	arguing,	I	must	have	paid.

Other	Man:	Not	necessarily.	I	could	be	arguing	in	my	spare	time.

Man:	I’ve	had	enough	of	this!

Other	Man:	No	you	haven’t.

Man:	Oh	shut	up!

Introduction	to	Software	Design	and
Implementation
Asking	a	Question

There	comes	a	time	when	input	from	the	user	is	required	to	be	able	to	collect	data	to
process.	This	can	be	done	using	the	input	function.	This	function	takes	a	string
prompt	as	an	argument.	When	the	code	is	run	the	user	sees	the	prompt	and	types	in
the	data.	input	takes	this	data	in	as	a	string,	i.e.	a	piece	of	text.	An	example	of	using
input	follows.

name	=	input("What	is	your	name?	")
print("Hello",	name	+	"!	Have	a	nice	day.")

Saving	as	input.py	and	running	the	code,	the	output	is	similar	to

>>>	
What	is	your	name?	Arthur,	King	of	the	Britons
Hello	Arthur,	King	of	the	Britons!	Have	a	nice	day.

Notice	that	the	input	prompt	has	a	space	at	the	end	after	the	question	mark.	This
space	is	included	to	separate	the	question	from	the	user’s	response	in	the	interaction.
Without	it,	the	interaction	would	look	less	appealing	to	the	user:	What	is	your	name?
Arthur,	King	of	the	Britons

As	the	example	shows,	strings	can	be	joined	together	to	form	one	string	for	use	in	a	
print	function.	This	is	very	useful	in	situations	such	as	this	where	we	want	to	print	a
combination	of	messages	and	values	(as	in	our	example).	The	examples	show	both
methods	of	joining	strings	together	for	printing.	The	,	is	the	first	one	used,	it	joins	any
items	together	with	spaces	automatically	placed	in	between.	The	second	is	the	+
symbol,	it	joins	the	items	together	by	adding	one	string	to	the	next	to	form	a	single
string.



input	Syntax	
variable_name	=	input(string_prompt)
input	Semantics
variable_name	is	given	the	string	value	of	what	the	user	types	in	after	being	
prompted.
print	Syntax	
print(item1,	item2,	...,	itemn)
print	Semantics	
Each	item	is	displayed	in	the	interpreter,	with	a	space	separating	each	item.	print	
also	takes	two	optional	arguments.	The	sep	argument	changes	what	the	separator	
between	the	items.	If	not	given,	the	items	are	separated	with	a	space	otherwise,	
the	items	will	be	separated	by	the	given	string.	For	example:
				print(item1,	item2,	...,	itemn,	sep="separator")
Results	in	the	items	being	separated	by	the	"separator"	string	instead	of	spaces.	
The	end	argument	changes	what	is	printed	after	all	the	items.	Multiple	print	
function	calls	will	display	output	on	separate	lines,	unless	the	end	argument	is	
changed	as	the	default	is	to	end	prints	with	a	newline	character.	For	example:	
				print(item1,	item2,	...,	itemn,	end="ending")
Will	end	the	print	with	the	"ending"	string	after	all	the	items	are	printed.	

True	or	False

In	programing	there	is	always	a	time	when	a	test	is	required.	This	can	be	used,	for
example,	to	see	if	a	number	has	a	relationship	with	another	or	if	two	objects	are	the
same.

There	are	several	character	combinations	that	allow	for	testing.

==	is	equal	to
!=		not	equal	to
<			Less	than
>			Greater	than
<=		Less	than	or	equal	to
>=		Greater	than	or	equal	to

>>>	1	==	1
True
>>>	2	!=	1
True
>>>	2	<	1
False
>>>	"Tim"	<	"Tom"
True
>>>	"Apple"	>	"Banana"
False
>>>	"A"	<	"a"
True
>>>	type(True)
<class	'bool'>

As	can	be	seen	these	statements	result	in	either	True	or	False.	True	or	False	are	the
two	possible	values	of	the	type	bool	(short	for	boolean).	Also	note	that	upper	and
lower	case	letters	in	strings	are	not	equal	and	that	an	upper	case	letter	is	less	than
the	corresponding	lower	case	letter.	The	reason	for	this	is	that	computers	can	only
understand	numbers	and	not	any	characters.	Therefore,	there	is	a	convention	set	up
to	map	every	character	to	a	number.	This	convention	has	become	the	ASCII	scheme.
ASCII	makes	the	upper	case	letters	be	the	numbers	65	through	to	90	and	the	lower



case	letters	the	numbers	97	to	122.

Making	Decisions

The	ability	to	do	a	test	has	no	use	if	it	can	not	be	used	in	a	program.	It	is	possible	to
test	and	execute	a	body	of	code	if	the	test	evaluates	to	True.

This	is	done	using	the	if	statement.

Let’s	start	with	a	simple	example.	The	following	code	is	an	example	of	an	if	statement
that	will	display	a	hello	message	if	the	name	input	by	the	user	is	"Tim".

name	=	input("What	is	your	name?	")

if	name	==	"Tim"	:
				print("Greetings,	Tim	the	Enchanter")

Saving	this	code	as	if.py	and	running,	the	output	from	this	code	looks	like:

>>>	
What	is	your	name?	Tim
Greetings,	Tim	the	Enchanter

>>>	
What	is	your	name?	Arthur,	King	of	the	Britons

As	can	be	seen	if	name	does	not	equal	"Tim"	then	nothing	is	output	from	the	code.

If	Statement	Syntax

if	test:
				body

If	statements	start	with	an	if	followed	by	a	test	and	then	a	colon.	The	body	of
code	to	be	executed	starts	on	a	new	line	and	indented	following	the	Python
indentation	rules.

Semantics

If	test	evaluates	to	True	then	body	is	executed.	Otherwise,	body	is	skipped.

What	if	we	want	to	run	a	different	block	of	code	if	the	test	is	False?	This	requires	an
if,	else	statement	Our	example	can	be	modified	to	print	a	different	message	if	name
is	not	"Tim".

name	=	input("What	is	your	name?	")



if	name	==	"Tim"	:
				print("Greetings,	Tim	the	Enchanter")
else	:
				print("Hello",	name)

Saving	this	code	as	if_else.py	,	the	output	from	this	code	looks	like:

>>>	
What	is	your	name?	Tim
Greetings,	Tim	the	Enchanter

>>>	
What	is	your	name?	Arthur,	King	of	the	Britons
Hello	Arthur,	King	of	the	Britons

If-Else	Syntax

	if	test:
				body1
	else:
				body2

The	if	segment	of	the	If-Else	statement	is	the	same	is	for	if.	After	body1	of	the
if	on	a	new	line	and	de-dented	is	an	else	followed	by	a	colon.	Then	body2	starts
on	a	new	line	and	indented	again	following	the	Python	indentation	rules.
Semantics	If	test	evaluates	to	True	then	body1	is	executed.	Otherwise	body2	is
executed.

It	is	also	possible	to	carry	out	multiple	tests	within	the	same	if	statement	and	execute
different	blocks	of	code	depending	on	which	test	evaluates	to	True.	We	can	do	this
simply	by	using	an	if,	elif,	else	statement.	Our	example	can	be	modified	further	to
look	like	the	following

name	=	input("What	is	your	name?	")

if	name	==	"Tim"	:
				print("Greetings,	Tim	the	Enchanter")
elif	name	==	"Brian"	:
				print("Bad	luck,	Brian")
else	:
				print("Hello",	name)

Saving	this	code	as	if_elif_else.py	,	our	example	now	has	the	following	output:

>>>	
What	is	your	name?	Tim
Greetings,	Tim	the	Enchanter



>>>	
What	is	your	name?	Brian
Bad	luck,	Brian

>>>	
What	is	your	name?	Arthur,	King	of	the	Britons
Hello	Arthur,	King	of	the	Britons

If-Elif-Else	Syntax

if	test1:
				body1
elif	test2:
				body2
.
.
.
elif	testn:
				bodyn
else:
				bodyn1

The	if	segment	of	the	If-Elif-Else	statement	is	the	same	as	the	if	statement.
This	is	the	followed	by	an	elif	on	a	new	line	and	de-dented	from	the	body	of	the	
if.	This	is	followed	by	the	next	test	and	a	colon.	The	body	of	this	test	starts	on	a
new,	indented	line.	This	is	repeated	for	all	the	elif	statements	required.	Then
(if	required)	an	else	statement	is	last	as	described	in	the	If-Else	syntax	section.

Semantics

If	test1	evaluates	to	True	then	body1	is	executed.	Otherwise,	if	test2	evaluates
to	True	body2	is	executed.	If	all	the	tests	are	tested	and	if	none	evaluate	to	True
then	bodyn1	is	executed.	In	other	words,	the	first	(and	only	the	first)	True	test	in
the	if-elif-elif-…	chain	executes	its	body.	If	there	is	no	else	statement	and	none
of	the	tests	are	True,	then	nothing	is	executed.	The	test	of	an	if/elif	statement	is
known	as	the	condition,	because	it	specifies	when	the	body	will	execute.	if,
elif,	and	else	statements	are	also	known	as	conditional	statements.

Being	Repetitive

We	are	off	to	a	good	start,	but	the	interaction	is	not	very	long.	We	are	not	doing	much
before	we	abruptly	end	the	conversation.	For	our	next	addition	to	the	program,	we
would	like	to	be	able	to	talk	to	the	user	for	as	long	as	we	can.	Let’s	accomplish	this	by
asking	the	user	for	a	topic,	talking	about	that	topic,	then	asking	for	another	topic.
Here	is	an	example	of	what	we	might	want:

What	is	your	name?	Tim
Greetings,	Tim	the	Enchanter
What	do	you	want	to	talk	about?	Python
Do	you	like	Python?	yes
Why	do	you	think	that?	it's	easy	to	use
I	also	think	that	it's	easy	to	use



What	do	you	want	to	talk	about?	coconuts
Do	you	like	coconuts?	no
Why	do	you	think	that?	they	cannot	migrate
I	also	think	that	they	cannot	migrate
What	do	you	want	to	talk	about?	CSSE1001
Do	you	like	CSSE1001?	very	much
Why	do	you	think	that?	the	course	notes	are	very	useful
I	also	think	that	the	course	notes	are	very	useful
What	do	you	want	to	talk	about?	nothing
Okay.	Goodbye,	Tim!

To	do	this,	we	will	need	to	have	a	way	to	repeat	the	discussion	until	the	conversation
is	over.	We	can	use	a	construct	called	a	while	loop.	We	need	to	consider	what	code
should	be	repeated	(in	this	case,	the	discussion	of	a	topic)	and	when	it	should	keep
going	(in	this	case,	when	the	topic	is	not	“nothing”).	Let’s	update	our	code	to	include
the	repetition.	This	code	can	be	downloaded	as	interaction_while.py

name	=	input("What	is	your	name?	")
if	name	==	"Tim"	:
				print("Greetings,	Tim	the	Enchanter")
elif	name	==	"Brian"	:
				print("Bad	luck,	Brian")
else	:
				print("Hello",	name)

topic	=	input("What	do	you	want	to	talk	about?	")
while	topic	!=	"nothing"	:
				like	=	input("Do	you	like	"	+	topic	+	"?	")
				response	=	input("Why	do	you	think	that?	")
				print("I	also	think	that",	response)
				topic	=	input("What	do	you	want	to	talk	about?	")

print("Okay.	Goodbye,	"	+	name	+	"!")

The	topic	=	input(...)	line	above	the	loop	asks	for	the	first	topic.	The	while	topic	!=	
"nothing"	line	checks	if	the	given	condition	is	True,	and	if	it	is,	then	the	loop	body
repeatedly	performs	the	actions	until	the	condition	is	False.	Notice	that	the	last	line	of
the	body	asks	for	a	new	topic,	which	is	used	as	the	topic	for	the	next	repetition	of	the
loop.	If	that	new	topic	is	nothing,	then	the	loop	test	topic	!=	"nothing"	becomes	False,
so	the	while	loop	will	stop	running	and	the	code	will	continue	after	the	loop	body
(where	the	indentation	stops).	Notice	that	we	are	asking	if	the	user	likes	the	topic,
but	we	are	not	using	the	response	that	the	user	gives.	Ignoring	the	input	from	the
user	is	very	unusual	behaviour,	but	we	have	done	it	here	to	simplify	the	example.	Run
this	code	to	experiment	with	it.	What	happens	when	the	first	topic	is	“nothing”?	Why
does	that	happen?	One	thing	that	might	seem	a	bit	odd	about	our	code	is	that	the	
topic	=	input(...)	line	occurs	in	two	places,	once	before	the	while	loop,	and	once	at
the	end	of	the	loop	body.	This	has	to	happen	this	way	because	the	topic	needs	to	be
entered	in	before	the	topic	!=	"nothing"	test	happens.	We	can	avoid	this	by	exiting	the
loop	from	inside	the	body.	This	is	done	using	the	break	keyword.	When	break	is
executed	inside	a	loop,	the	program	will	immediately	exit	the	loop	and	continue	after
the	body.	We	can	use	this	with	an	if	statement	to	specify	how	the	loop	should	finish.
This	code	is	available	at	interaction_break.py

name	=	input("What	is	your	name?	")
if	name	==	"Tim"	:
				print("Greetings,	Tim	the	Enchanter")
elif	name	==	"Brian"	:



				print("Bad	luck,	Brian")
else	:
				print("Hello",	name)

while	True	:
				topic	=	input("What	do	you	want	to	talk	about?	")
				if	topic	==	"nothing"	:
								break
				like	=	input("Do	you	like	"	+	topic	+	"?	")
				response	=	input("Why	do	you	think	that?	")
				print("I	also	think	that",	response)

print("Okay.	Goodbye,	"	+	name	+	"!")

The	first	change	that	we	have	made	is	the	condition	test	of	the	while	loop.	Since	the
loop	keeps	going	as	long	as	the	condition	is	True,	that	means	that	“while	True”	will
keep	going	until	the	break	is	reached	(or	it	will	go	on	forever	if	there	is	no	break;	loops
that	go	forever	are	called	infinite	loops).	Using	break	in	this	way	means	that	the	topic	
=	input(...)	line	only	has	to	appear	once	in	our	code.	In	many	situations,	it	is
considered	bad	programming	practice	to	have	logic	that	exits	a	loop	from	within	the
middle	of	the	loop	body.	This	is	because	it	complicates	understanding	the	loop’s
behaviour.	The	reader	needs	to	understand	the	loop’s	logical	condition	plus	find	and
understand	the	break	logic	in	the	middle	of	the	loop	body.	In	the	example	above,	the
loop	body	is	short	and	simple	enough	that	finding	the	break	logic	is	not	difficult.
However,	once	the	logic	becomes	more	complex	and	the	code	longer	it	would	be
harder	to	read.	Try	to	avoid	writing	code	that	exits	a	loop	from	the	middle	of	the
loop’s	body.	But,	be	aware	that	it	is	possible	and	you	may	need	to	identify	this	type	of
logic	in	someone	else’s	code.

While	Loop	Syntax

while	test:
				body

The	first	line	contains	the	word	while	followed	by	a	boolean	test	and	a	:.
Following	is	the	body,	an	indented	block	of	code.

Semantics

If	test	evaluates	to	True	then	the	body	is	executed.	Then	the	test	is	evaluated
again,	if	it	is	still	True,	then	the	body	is	executed	again.	This	process	repeats
until	the	test	fails	(becomes	False).	Each	repetition	is	called	an	iteration
through	the	loop,	and	the	act	of	performing	a	repeated	task	is	called	iterating.
When	the	test	becomes	False	(or	if	it	is	False	to	start	with),	we	“exit	the	loop”
and	execute	the	next	statement	after	the	indented	block.	If	a	break	statement	is
executed	inside	the	loop,	the	loop	will	exit	immediately.


