
Then	you	must	cut	down	the	mightiest	tree	in	the	forest…	with…	a	herring!

Loop	Invariants
It	is	not	always	easy	to	tell	if	a	loop	will	create	the	correct	result	in	every
circumstance.	Therefore,	we	use	a	loop	invariant	that	states	if	this	condition	is	True
then	the	result	should	be	correct.	For	this	to	work	completely	the	invariant	needs	to
be	True	at	the	start,	at	the	end	of	the	loop	body	and	if	the	loop	condition	is	False	the
invariant	must	still	be	True.

Here	is	an	example	that	finds	the	prime	factors	of	a	number	and	puts	them	into	a	list.
This	function	will	use	the	next_prime	function	found	in	prime.py.

from	prime	import	*

def	factorise(n)	:
				"""Returns	a	list	of	the	prime	factors	of	'n'.

				Parameters:
								n	(int):	Number	for	which	factors	are	to	be	found.

				Preconditions:
								n	>=	2

				Return:
								list<int>:	Prime	factors	of	'n'.
				"""
				prime	=	2
				factors	=	[]
				while	n	>	1	:
								#	Loop	Invariant:	product(factors)	*	n	==	initial	n
								while	n	%	prime	==	0	:
												factors.append(prime)
												n	/=	prime
								prime	=	next_prime(prime)
				return	factors

This	function	starts	with	the	current	prime	number	set	to	2,	as	2	is	the	first	prime
number,	and	an	empty	list	to	store	the	primes	in.	We	then	start	a	while	loop	that
keeps	iterating	as	long	as	n	>	1.	We	do	not	want	to	go	less	than	2	as	there	are	no
primes	less	than	2.	It	is	here,	in	a	comment,	that	we	introduce	our	loop	invariant.	In
this	case	it	is	that	the	product	of	all	the	primes	found	so	far	multiplied	by	the	current
number	that	we	are	operating	on	equals	the	initial	number.	We	then	start	another
while	loop	that	keeps	appending	the	current	prime	number	to	the	factors	list	while
the	current	number	is	divisible	by	that	prime,	also	dividing	the	current	number	by
that	prime	to	move	onto	the	next	number.	Back	in	the	first	while	loop	we	use	the	
next_prime	function	to	move	onto	the	next	prime	number.	The	last	thing	the	function
does	is	return	the	list	of	factors.

Saving	as	factorise.py	we	can	run	a	few	tests	to	show	this	function	working.

>>>	factorise(10)
[2,	5]
>>>	factorise(340)
[2,	2,	5,	17]
>>>	2	*	2	*	5	*	17



340


