
All	right	…	all	right	…	but	apart	from	better	sanitation	and

medicine	and	education	and	irrigation	and	public	health	and	roads	and	a

freshwater	system	and	baths	and	public	order	…	what	have	the	Romans

ever	done	for	us?

—	Monty	Python’s	Life	of	Brian

Functional	Decomposition
Reusing	the	Code
In	the	previous	readings	we	used	control	structures	to	implement	a	simple
conversation	between	a	user	and	the	computer.	It	is	not	very	much	to	ask	the	user	for
all	the	topics	to	discuss.	Let’s	add	in	some	code	that	starts	off	with	a	query	about
university,	and	make	the	computer’s	reply	“That’s	very	interesting”.	In	principle,	this
is	easy,	because	we	already	have	code	that	does	a	discussion,	so	perhaps	we	can
reuse	it	by	just	copying	it	and	changing	certain	parts.

name	=	input("What	is	your	name?	")
if	name	==	"Tim"	:
				print("Greetings,	Tim	the	Enchanter")
elif	name	==	"Brian"	:
				print("Bad	luck,	Brian")
else	:
				print("Hello	"	+	name	+	".")

like	=	input("Do	you	like	university?	")
response	=	input("Why	do	you	think	that?	")
print("That's	very	interesting.")

while	True	:
				topic	=	input("What	do	you	want	to	talk	about?	")
				if	topic	==	"nothing"	:
								break
				like	=	input("Do	you	like	"	+	topic	+	"?	")
				response	=	input("Why	do	you	think	that?	")
				print("I	also	think	that",	response)

print("Okay.	Goodbye,	"	+	name	+	"!")

This	works,	but	there	are	a	couple	of	things	that	might	go	wrong	with	copying	code
like	this.	First,	it	makes	the	code	look	more	complicated	than	it	is,	and	it	is	harder	to
read	when	the	code	is	in	two	places	instead	of	one.	The	second	issue	is	to	do	with
updating	the	program:	if	we	want	to	modify	how	a	discussion	works,	then	we	would
need	to	update	the	code	in	two	separate	places.	Worse,	if	we	forget	one	of	those	two
places,	then	the	two	discussions	become	different.

What	we	want	to	be	able	to	do	is	to	pull	out,	or	abstract	the	idea	of	a	“discussion”	into
a	separate	part	of	the	code,	and	then	be	able	to	easily	use	that	code	in	as	many	places
as	possible.	Ideally,	we	want	to	end	up	with	code	that	behaves	like	this	(with	code
instead	of	the	comments):

#	have	a	discussion	on	"university"
print("That's	very	interesting.")
while	True	:
				topic	=	input("What	do	you	want	to	talk	about?	")
				if	topic	==	"nothing"	:
								break
				#	have	a	discussion	on	"topic"
				print("I	also	think	that")#	,	user's	response

And	then	somewhere	else	in	the	code,	we	can	define	how	a	discussion	works.	This
abstraction	is	called	a	function.	Here	is	what	the	definition	of	a	“discuss”	function
looks	like	in	Python:

def	discuss(topic)	:
				like	=	input("Do	you	like	"	+	topic	+	"?	")
				response	=	input("Why	do	you	think	that?	")
				return	response

We	use	the	def	keyword	to	say	that	we	are	defining	the	function	called	discuss.	Inside
parentheses,	we	state	the	formal	parameters,	also	called	arguments,	that	the	function
takes,	which	are	the	bits	of	information	that	the	function	needs	to	know	to	complete
its	task.	In	this	case,	we	cannot	discuss	something	without	knowing	what	topic	to
discuss,	so	we	specify	that	the	discuss	function	takes	a	single	parameter,	which	we
will	give	the	name	topic.	After	the	first	line	is	an	indented	body	of	code,	most	of	which
we	are	already	familiar	with.	In	this	case,	the	discussion	needs	to	supply	or	‘give
back’	a	result	at	the	end,	which	is	the	response	that	the	user	entered.	We	do	this
using	the	return	keyword,	which	is	shown	in	the	last	line	above.	When	a	return
statement	is	reached,	the	function	will	end	immediately;	if	there	is	a	value	after	the
return	keyword,	it	is	the	result	that	is	‘given	back’	(we	say	the	value	is	returned).
Every	time	that	we	use	the	discuss	function,	this	body	of	code	is	what	actually	gets
executed.	The	indentation	behaves	in	the	same	way	we’ve	seen	before	–	when	we	stop
indenting,	then	we	have	finished	the	function	definition.	Now	that	we	have	this
abstraction,	we	can	use	the	discuss	function	instead	of	using	the	actual	discussion
code	directly:

name	=	input("What	is	your	name?	")
if	name	==	"Tim"	:
				print("Greetings,	Tim	the	Enchanter")
elif	name	==	"Brian"	:
				print("Bad	luck,	Brian")
else	:
				print("Hello	"	+	name	+	".")

discuss("university")
print("That's	very	interesting.")

while	True	:
				topic	=	input("What	do	you	want	to	talk	about?	")
				if	topic	==	"nothing"	:
								break
				response	=	discuss(topic)
				print("I	also	think	that",	response)

print("Okay.	Goodbye,	"	+	name	+	"!")

The	full	program	that	we	have	written	is	in	interaction.py.	This	file	also	includes
comments,	which	are	discussed	in	the	next	section.

Notice	the	use	of	the	return	value	in	this	line:	response	=	discuss(topic).	This	will
execute	the	discuss	function	above,	and	the	value	that	is	returned	is	assigned	to	the
variable	response.	The	line	discuss("university")	shows	a	situation	where	our	function	is
used	for	its	side-effect	of	interacting	with	the	user.	The	value	is	still	returned	by	the
function,	but	it	is	discarded	by	the	main	program.

Function	Syntax

A	definition	has	the	following	form:

def	function_name(arg1,	arg2,	...)	:
				body

Function	definitions	start	with	the	word	def,	followed	by	a	function_name	which
follows	the	same	syntax	rules	as	for	variable	names.	In	parentheses	is	a	comma
separated	list	of	arguments	–	these	are	all	names	of	variables	and	are	usually
called	the	formal	parameters.	The	body	is	an	indented	sequence	of
statements.

Executing,	or	“calling”,	a	function	uses	the	syntax

function_name(value1,	value2,	...)

The	comma-separated	values	are	called	the	actual	parameters.	The	number	of
values	must	be	the	same	as	the	number	of	args	in	the	definition.

Semantics

When	a	function	is	called,	the	actual	parameters	are	associated	with	the	formal
parameters.	That	is,	each	arg	is	treated	as	a	variable	with	the	corresponding	
value.	Then	the	body	is	executed.	After	that,	the	program	will	continue	from	the
point	where	the	function	was	called.	If	a	return	statement	is	executed,	then	the
function	will	exit	immediately.	The	resulting	value	of	the	function	call	will	be
the	value	used	in	the	return	statement.

Another	example	of	function	definition	and	use	Although	addition	is	built	into
Python	we	can	create	our	own	definition	as	follows.

def	add(n,	m)	:
				return	n	+	m

In	detail	–	def	introduces	the	function	definition	for	add.	The	name	of	the
function	is	add	and	its	formal	parameters	are	n	and	m.	The	function	simply

computes	the	sum	of	n	and	m	and	returns	that	as	the	result	of	the	function	(using
the	return	statement).

Here	are	some	example	uses.

>>>	add(2,	3)
5
>>>	3	*	add(2,	3)
15

In	the	first	case	we	call	the	function	passing	in	actual	parameters	2	and	3.
When	the	function	is	evaluated,	n	gets	the	value	2	and	m	gets	the	value	3.	The
function	returns	5	as	is	seen	when	evaluated	in	the	interpreter.	The	second
example	shows	that	we	can	use	a	call	to	the	function	within	an	arithmetic
expression.

Decomposing	Problems
There	is	more	to	software	engineering	than	knowing	how	to	write	code.	Part	of	the
design	process	discussed	above	is	problem	decomposition.	If	we	are	given	a
description	of	a	problem	or	task,	how	can	we	write	a	program	that	solves	the
problem?

The	problem	we	will	work	on	in	this	section	is	“write	a	program	to	find	the	nth	prime
number”.	The	first	prime	is	2,	the	second	is	3,	the	third	is	5	and	so	on.

The	first	step	(after	we	understand	the	problem)	is	to	decompose	the	problem	into
simpler	and	simpler	subproblems	until	we	reach	a	point	where	the	subproblems	are
easy	to	implement.

Given	we	need	to	find	the	nth	prime	number,	we	could	start	at	some	prime	(like	2	or
3)	and	find	the	next	prime	number.	If	we	repeat	this	process,	we	will	get	to	the	prime
we	want.	So	an	interesting	subproblem	is	“given	a	number	n,	find	the	next	prime
number	after	n”.

To	do	this	we	can	repeatedly	look	at	the	next	number	and	ask	if	that	number	is	a
prime,	if	so	we	have	finished,	if	not	we	keep	looking.	So	the	next	interesting
subproblem	is	“given	a	number	n	determine	if	n	is	a	prime”.

Recall	that	a	prime	is	a	number	that	is	divisible	by	only	itself	and	one.	We	can
therefore	test	for	a	number	being	a	prime	if	we	can	test	for	divisibility	of	every
number	from	2	up	to	n.	So,	the	last	subproblem	is	“given	numbers	n	and	m,	determine
if	m	divides	n	(exactly)”.

Divisible	or	not	Divisible
There	is	a	useful	mathematical	operation	that	can	be	used	for	testing	for	divisibility.
The	operator	%	is	known	as	mod	or	modulo.	It	returns	the	remainder	of	division,
making	it	useful	to	test	for	divisibility.

>>>	7	%	2
1
>>>	7	%	4
3
>>>	9	%	3

0
>>>	10	%	5	==	0
True
>>>	7	%	4	==	0
False

The	first	three	results	are	because	7	//	2	is	3	with	remainder	1,	7	//	4	is	1	with
remainder	3,	and	9	//	3	is	3	with	remainder	0.	Testing	for	divisibility	is	the	same	as
testing	if	the	remainder	is	equal	to	0.	So,	10	is	divisible	by	5,	and	7	is	not	divisible	by	4.

Now	we	have	reached	a	level	of	detail	that	we	know	how	to	write	it	all	in	Python	code,
so	we	can	now	start	writing	the	code,	building	up	to	larger	subproblems.

Is	a	Number	Prime?
We	will	write	a	function	called	is_prime	to	test	a	number	and	return	whether	it	is	a
prime	number	or	not,	using	the	idea	above	of	testing	numbers	from	2	to	n.	This	code
can	be	downloaded	as	the	file	is_prime1.py.

def	is_prime(num)	:
				"""Returns	True	iff	'num'	is	prime.

				Parameters:
								num	(int):	Integer	value	to	be	tested	to	see	if	it	is	prime.

				Return:
								bool:	True	if	'num'	is	prime.	False	otherwise.

				Preconditions:
								num	>	1
				"""
				i	=	2
				while	i	<	num	:
								if	num	%	i	==	0	:
												return	False
								i	=	i	+	1
				return	True

The	input	to	the	function	is	the	number	num,	this	is	the	number	that	we	wish	to	test	if
it	is	prime.	Notice	in	the	comment	there	is	a	precondition.	As	we	discussed	earlier,
preconditions	form	a	“contract”	with	the	user;	the	function	will	work	only	if	certain
conditions	are	met.	So,	for	example,	if	someone	uses	is_prime	with	a	number	less	than
2,	then	the	result	could	be	anything	-	in	this	case,	an	incorrect	value	will	be	returned,
in	other	cases	the	function	could	cause	an	error	-	but	that	is	the	caller’s	problem
because	this	falls	outside	the	contract.

The	first	line	of	the	function	sets	i	to	2,	i	is	the	counting	variable	that	is	being	used	to
keep	track	of	the	current	value	to	test.	It	is	common	coding	practice	to	use	i	(and	j
and	k	as	counting	variables	in	loops).	The	next	line	is	a	while,	this	while	tests	if	i	<	
num,	this	will	mean	that	we	can	test	the	divisibility	of	all	the	numbers	less	than	num.	The
first	line	of	the	body	of	code	in	the	while	is	an	if	statement.	Inside	the	while	loop,	all
we	need	to	do	is	check	if	i	divides	num	using	the	%	operator.	If	i	does	divide	num	then	num
is	not	prime,	therefore	the	body	of	the	if	statement	is	to	simply	return	False.	Notice
that	this	takes	advantage	of	the	way	return	works:	a	return	statement	will	end	the
function	immediately;	at	this	stage,	we	already	know	that	num	is	not	prime,	so	we	can
return	immediately	and	ignore	the	rest	of	the	function.	The	last	line	of	the	while	body
is	to	increment	i	by	1,	this	moves	onto	the	next	number	to	check.	The	last	line	of	the
function	is	to	return	True.	This	again	uses	the	“stop	immediately”	property	of	return

statements:	if	the	function	has	not	returned	False	by	now,	then	the	if	num	%	i	==	0:
test	never	became	True	during	the	while	loop,	so	we	know	that	num	must	be	prime,	so
we	return	True.

Here	are	a	couple	of	examples	of	is_prime.	Try	out	some	more	to	test	your
understanding	of	the	function.

>>>	is_prime(4)
False
>>>	is_prime(101)
True

This	code	works	fine	but	we	can	do	better!	Firstly	note	that	if	2	does	not	divide	num
then	there	is	no	point	testing	if	other	even	numbers	divide	num	(as	all	even	numbers
are	divisible	by	2).	We	only	need	to	consider	odd	i.	Secondly	if	i	does	divide	num	then
there	is	a	j	such	that	num	==	i*j.	Therefore,	if	num	has	a	factor	then	one	will	be	less
than	or	equal	to	the	square	root	of	num.	Summarising,	we	only	need	to	test	if	2	divides	
num	and	if	any	odd	i	less	than	or	equal	to	the	square	root	of	num	divide	num.

The	function	below	implements	these	ideas.	Update	the	definition	to	match	the
following	code,	or	download	is_prime2.py.

import	math

def	is_prime(num)	:
				"""Returns	True	iff	'num'	is	prime.

				Parameters:
								num	(int):	Integer	value	to	be	tested	to	see	if	it	is	prime.

				Return:
								bool:	True	if	'num'	is	prime.	False	otherwise.

				Preconditions:
								num	>	1
				"""
				if	num	==	2	:
								return	True
				elif	n	%	2	==	0	:
								return	False

				sqrt_num	=	math.sqrt(num)
				i	=	3
				while	i	<=	sqrt_num	:
								if	num	%	i	==	0	:
												return	False
								i	=	i	+	2
				return	True

The	first	line	introduces	an	import	statement.	This	is	used	to	load	a	module	of	other
functions	and	data	that	could	be	useful.	In	this	case	the	“math”	module	is	used.	This
module	contains	many	mathematical	functions	and	numbers	(such	as	pi)	not	present
in	the	default	Python	libraries,	in	our	case	we	are	using	the	square	root	function
(sqrt).	To	see	more	of	what	is	in	the	math	module,	try	>>>	help(math)	after	importing	
the	math	module.

The	first	if	statement	in	the	code	checks	if	num	is	2	and	if	so,	it	is	obviously	prime	so	
True	is	returned.	The	elif	statement	deals	with	divisibility	by	2,	if	num	is	divisible	by	2

then	it	is	not	prime,	therefore	False	is	returned.	sqrt_num	is	set	to	the	square	toot	of	
num.	To	do	this,	we	call	the	square	root	function	(sqrt)	of	the	math	library	using	the
syntax	math.sqrt(num).	i	is	then	started	at	3	as	we	are	now	checking	the	odd	numbers
only.	The	while	loop	will	keep	going	while	i	<=	sqrt_num	and	will	terminate	when	this
test	becomes	false	(i.e.	when	i	>	sqrt_num).	The	if	statement	checks	divisibility	of	num
with	i	as	before	and	returns	False	if	that	is	the	case.	i	is	then	incremented	by	2,
moving	to	the	next	odd	number.	As	before,	if	the	function	has	not	returned	by	the	end
of	the	while	loop,	then	the	last	line	will	be	executed	returning	True	(i.e.	num	is	prime).

Now	that	we	have	updated	the	function,	we	can	test	it	again.

>>>	is_prime(2)
True
>>>	is_prime(9)
False
>>>	is_prime(19)
True

Thinking	more	about	how	to	test	for	primality	enabled	us	to	write	more	efficient	code.
The	second	version	of	the	is_prime	function	is	more	efficient	as	there	are	fewer
iterations	through	the	while	loop.	This	means	the	code	will	return	an	answer	faster
(especially	for	larger	numbers).	Try	comparing	the	two	functions	with	really	large
numbers	and	see	if	there	is	a	difference.	Although	efficiency	is	very	important	in
software	engineering,	we	leave	more	detailed	and	formal	discussions	of	efficiency	to
later	courses.

The	Next	Prime
The	next	function	to	define	is	next_prime	which	takes	an	num	and	returns	the	next	prime
after	num.	We	will	use	the	same	idea	as	in	the	previous	function	-	i.e.	increment	by
twos.	So	we	will	do	slightly	different	things	depending	on	whether	num	is	odd	or	even.

def	next_prime(num)	:
				"""Returns	the	next	prime	number	after	'num'.

				Parameters:
								num	(int):	Starting	point	for	the	search	for	the	next	prime	number.

				Return:
								int:	The	next	prime	number	that	can	be	found	after	'num'.

				Preconditions:
								num	>	1
				"""
				if	num	%	2	==	0	:
								next_number	=	num	+	1
				else	:
								next_number	=	num	+	2

				#	next_number	is	the	next	odd	number	after	num
				while	not	is_prime(next_number)	:
								next_number	=	next_number	+	2
				return	next_number

Looking	at	the	code	in	detail	–	we	start	with	an	if	statement	that	tests	if	num	is	even.
We	use	the	variable	next_number	to	be	the	next	candidate	for	being	a	prime	and	we
initialise	it	to	be	either	one	or	two	more	than	num,	depending	on	whether	num	is	odd	or

even.	We	have	added	a	comment	to	remind	us	about	this.	The	while	loop	simply
increments	next_number	by	2	until	it	becomes	prime.	Note	that	the	test	in	the	while	loop
is	the	logical	negation	of	the	is_prime	test.	In	other	words,	we	continue	looping	while	
next_number	is	not	a	prime.

Here	are	the	results	of	testing.

>>>	next_prime(3)
5
>>>	next_prime(13)
17
>>>	next_prime(101)
103
>>>	next_prime(2)
3
>>>	next_prime(20)
23

The	nth	Prime

Now	we	bring	it	all	together	by	writing	the	top-level	function	nth_prime	that	returns
the	nth	prime	number.

def	nth_prime(n)	:
				"""Returns	the	n'th	prime	number.

				Parameters:
								n	(int):	The	number	of	prime	numbers	to	find.

				Return:
								int:	The	n'th	prime.

				Preconditions:
								n	>	0
				"""
				next_prime_number	=	2
				i	=	1
				while	i	<	n	:
								#	loop	invariant:	next_prime_number	is	the	i'th	prime
								i	+=	1
								next_prime_number	=	next_prime(next_prime_number)
				return	next_prime_number

In	this	example	we	introduce	the	idea	of	a	loop	invariant.	A	loop	invariant	is	a
property	that,	if	it	is	true	at	the	beginning	of	the	body,	then	it	is	also	true	at	the	end	of
the	loop	body.	So	if	the	code	in	the	body	satisfies	this	property	and	it	is	also	true
initially	(i.e.	when	we	enter	the	while	loop)	then	it	must	be	true	when	we	exit	the	loop.
A	loop	invariant	can	be	useful	in	helping	decide	on	how	variables	should	be	initialised,
how	the	variable	should	change	in	the	body,	and	when	to	exit	the	loop.	It	is	also	helps
document	what	the	loop	does.	So	think	of	the	loop	invariant	and	then	write	the	code!

In	our	example	the	loop	invariant	is	true	initially	(because	2	is	the	first	prime).
Assuming	it	is	true	at	the	start	of	the	loop,	then	the	code	advances	next_prime_number	to
the	next	prime	and	increments	i	and	so	the	loop	invariant	is	true	again	at	the	end	of
the	loop.	Therefore,	it	is	also	true	when	we	terminate.	In	which	case,	not	only	is	the
invariant	true	but	also	i	==	n	and	so	next_prime_number	is	indeed	the	nth	prime.

By	the	way,	i	+=	1	is	a	shorthand	for	i	=	i	+	1.	The	file	prime.py	contains	all	the	code
above	plus	a	top-level	comment	(using	the	triple	quotes	style).	In	fact,	what	we	have
just	done	is	write	our	own	module!	In	the	interpreter	try	import	prime	and	help(prime),
and	see	how	all	the	trouble	we	went	to	writing	comments	pays	off!

