
King	Arthur:	‘What	does	it	say?’

Maynard:	‘It	reads,	‘Here	may	be	found	the	last	words	of	Joseph	of

Arimathea.	He	who	is	valiant	and	pure	of	spirit	may	find	the	Holy	Grail

in	the	Castle	of	aaarrrrggh’.’

King	Arthur:	‘What?’

Maynard:	‘…The	Castle	of	aaarrrrggh.’

Bedevere:	‘What	is	that?’

Maynard:	‘He	must	have	died	while	carving	it.’

Programming	Style
Code	should	be	written	in	a	style	that	makes	it	easier	to	comprehend.	How	you
structure	and	layout	your	code	is	called	programming	style	and	it	is	a	seemingly
trivial	but	important	part	of	ensuring	your	code	is	easy	to	read.	(This	is	called	making
the	code	‘readable’.)	In	this	course	we	will	following	the	Google	Python	Style	Guide
when	writing	code.	Please	ensure	that	you	read	and	follow	these	rules.	In	the	style
guide	the	first	section,	Python	Language	Rules,	relates	to	how	to	use	particular
language	features.	The	second	section,	Python	Style	Rules,	relates	to	how	to	structure
your	code.	The	style	rules	are	most	immediately	applicable	to	the	code	you	write	in
the	early	stages	of	this	course.	Some	of	the	language	rules	will	become	more
applicable	later	in	the	course.

Commenting
Writing	Comments

Documentation	is	a	software	engineering	concept	that	provides	the	“explanation”	of
the	code.	Comments	should	describe	what	the	code	is	supposed	to	do,	how	to	use	it
properly,	and	anything	else	that	would	be	useful	to	know.	A	comment	is	a	piece	of
syntax	in	a	programming	language	which	lets	us	describe	the	program	code.	We	can
add	comments	without	affecting	what	our	code	actually	does.	Programming
languages	do	this	to	give	us	a	way	of	easily	documenting	our	code.

Documenting	code	is	very	important	—	it	aids	communication	between	developers
and	is	a	great	help	when	it	comes	to	maintenance!	Just	as	an	agreed	upon	layout	style
is	critical,	the	same	holds	for	commenting	style.	In	Python	there	are	two	types	of
comments,	each	serving	a	different	purpose.

The	first	style	of	comment	uses	the	#	character	followed	by	the	comment	until	the	end
of	the	line.	These	comments	are	useful	for	describing	complicated	lines	of	code,	or	as
a	reminder	for	what	a	particular	line	of	code	is	used	for.	These	lines	are	ignored	by
the	Python	interpreter	and	are	mainly	notes	to	the	writer	of	the	code.

The	second,	more	important	style	of	comments,	are	called	triple-quote	comments	or
docstrings.	These	are	written	using	triple	quotes	(three	quote	marks:	""").	Docstrings
are	meant	to	explain	what	use	a	function	serves,	without	going	into	the	details	of
“how	it	does	what	it	does”.	In	Python,	docstrings,	are	composed	of	two	important
parts.	The	first	is	a	brief	explanation	of	what	the	function	does.	This	is	followed	by	a
detailed	explanation	of	how	to	use	the	function.	This	detailed	explanation	should
include	a	description	of	the	parameters;	any	preconditions,	which	are	any
requirements	that	need	to	be	met	before	the	function	is	called	in	order	for	the

https://google.github.io/styleguide/pyguide.html


function	to	perform	correctly;	a	description	of	what	the	function	returns;	and	possibly
some	examples	of	usage.	We	can	think	of	these	comments	as	a	kind	of	contract
between	the	writer	and	user	of	the	function.	The	writer	is	promising	that,	if	the	user
calls	the	function	with	arguments	of	the	correct	type	that	satisfy	the	precondition	(if
there	is	one),	the	function	will	behave	as	described	in	the	comment.	If	the	user	calls
the	function	with	arguments	of	the	wrong	type,	or	that	do	not	satisfy	the	precondition,
the	writer	is	not	responsible	for	the	function’s	behaviour.

Function	Docstrings
Below	is	our	discuss	function	updated	with	some	helpful	comments,	which	is	in	the	
interaction.py	file.

def	discuss(topic)	:
				"""Discuss	a	topic	with	the	user	and	return	their	response.

				Ask	if	the	user	likes	the	topic	and	why.

				Parameters:
								topic	(str):	The	topic	under	discussion.

				Return:
								str:	Response	to	the	question	of	why	they	like	the	topic.
				"""
				like	=	input("Do	you	like	"	+	topic	+	"?	")
				response	=	input("Why	do	you	think	that?	")
				return	response

In	this	course,	we	will	use	the	following	triple	quote	commenting	style.

The	opening	triple	quote	should	be	the	first	line	of	the	body,	indented	as	part	of	the
body.	The	first	line	should	give	a	short	summary	of	the	function’s	behaviour.	If
necessary,	this	line	is	followed	by	a	blank	line,	and	then	by	a	more	detailed
explanation	of	the	function’s	behaviour.	This	is	followed	by	a	blank	line	followed	by	a
description	of	each	parameter.	The	parameter	description	should	indicate	the	type
the	function	expects	for	that	parameter,	the	type	is	in	parenthesis	after	the	function
name,	and	then	should	provide	a	description	of	what	the	function	expects	to	be
passed	to	that	parameter.	If	the	function	does	not	have	any	parameters	this	section	is
omitted.	Following	the	parameter	description	is	another	blank	line	and	then	a
description	of	what	the	function	returns.	The	return	description	should	indicate	the
type	of	value	being	returned	and	then	describe	what	is	being	returned.	In	this	case,
the	discuss	function	has	one	parameter	topic	of	type	str	(short	for	“string”)	that	is	the
topic	used	for	the	discussion	in	the	function’s	body.	The	function	returns	a	str	that	is
the	response	to	the	question	of	why	the	user	likes	the	topic	or	not.	We	can	also	add	a
precondition	to	the	comments.	Preconditions	state	what	must	be	done	(be	logically
true)	before	the	function	is	called.	Often	this	is	a	constraint	on	the	values	of	some
parameters,	over	and	above	the	type	constraint.	(i.e.	The	code	calling	the	function
must	ensure	that	the	value	of	the	parameters	meets	the	precondition	constraints.)
The	precondition	may	also	be	something	that	needs	to	be	done	before	the	function	is
called	(e.g.	some	other	function	must	be	called	before	this	function	is	called).	The
prime	numbers	example	below	shows	a	function	with	preconditions.	Examples	of
usage	demonstrate	what	the	caller	can	expect	when	the	use	the	function.	These
examples	serve	two	purposes.	Firstly,	they	demonstrate	what	result	will	be	returned
with	particular	parameters.	This	is	useful	for	functions	with	complex	logic.	Secondly,
the	example	of	usage	provides	test	cases,	as	the	function	can	be	executed	and	the
results	checked	against	the	results	indicated	in	the	example	of	usage.	The	examples
of	usage	should	be	formatted	to	look	like	an	interactive	Python	session	in	the
interpreter.	This	allows	the	Python	doctest	tool	to	automatically	test	the	function	to

https://docs.python.org/3.6/library/doctest.html


ensure	it	produces	the	expected	results.	(Note:	Initially	do	not	worry	about
understanding	how	to	use	doctest	or	getting	the	examples	of	usage	perfectly
formatted.	It	is	more	important	to	get	the	idea	of	writing	comments	that	help	other
programmers,	than	it	is	to	worry	about	understanding	automatic	testing.	Automated
testing	concepts	will	be	explored	in	detail	in	later	courses.)	At	the	end	is	a	line
containing	the	terminating	triple	quotes.

def	is_prime(num)	:
				"""Returns	True	iff	'num'	is	prime.

				Parameters:
								num	(int):	Integer	value	to	be	tested	to	see	if	it	is	prime.

				Return:
								bool:	True	if	'num'	is	prime.	False	otherwise.

				Preconditions:
								num	>	1

				Examples:
								>>>	is_prime(2)
								True
								>>>	is_prime(3)
								True
								>>>	is_prime(4)
								False
								>>>	is_prime(5)
								True
								>>>	is_prime(9)
								False
				"""

The	#	style	comments	are	completely	ignored	by	the	interpreter.	On	the	other	hand
the	triple	quotes	comments	become	part	of	the	function.	If	you	load	interaction.py	into
the	interpreter	and	then	start	typing	a	function	call,	you	will	see	that	the	first	line	of
the	comment	appears	in	the	little	pop-up	window,	as	shown	below.

Further,	some	python	tools,	like	pydoc,	extract	this	documentation	to,	for	example,
generate	documentation.	Also,	below	is	an	example	using	the	help	function	which
displays	the	docstring	comments	of	the	function.

>>>	help(discuss)
Help	on	function	discuss	in	module	__main__:

discuss(topic)
				Discuss	a	topic	with	the	user	and	return	their	response.
				
				Ask	if	the	user	likes	the	topic	and	why.
				
				Parameters:
								topic	(str):	The	topic	under	discussion.

				Return:
								str:	Response	to	the	question	of	why	they	like	the	topic.

>>>	



Classes	and	Methods	Docstrings
Commenting	classes	and	their	methods	is	slightly	different	to	commenting	functions.
The	class	itself	requires	a	comment	describing	what	the	class	does.	Again	not
explaining	how	it	does	it.	The	methods	are	commented	similarly	to	functions	but	with
a	slight	difference	to	the	type	declaration.	The	other	difference	is	that	the	__init__
method	of	the	class	has	a	Constructor	in	place	of	the	type	declaration.	Below	is	the
Point	class	from	the	Class	Design	notes.

class	Point(object)	:
				"""A	2D	point	ADT	using	Cartesian	coordinates."""

				def	__init__(self,	x,	y)	:
								"""Construct	a	point	object	based	on	(x,	y)	coordinates.
								
								Parameters:
												x	(float):	x	coordinate	in	a	2D	cartesian	grid.
												y	(float):	y	coordinate	in	a	2D	cartesian	grid.
								"""
								self._x	=	x
								self._y	=	y

				def	x(self)	:
								"""(float)	Return	the	x	coordinate	of	the	point."""
								return	self._x

				def	y(self)	:
								"""(float)	Return	the	y	coordinate	of	the	point."""
								return	self._y

				def	move(self,	dx,	dy)	:
								"""Move	the	point	by	(dx,	dy).

								Parameters:
												dx	(float):	Amount	to	move	in	the	x	direction.
												dy	(float):	Amount	to	move	in	the	y	direction.
								"""
								self._x	+=	dx
								self._y	+=	dy

Note	that	the	comment	for	the	__init__	method	does	not	have	a	Return:	comment.
This	is	due	to	a	class	constructor	not	returning	a	value,	it	creates	an	object	of	the
class	type	instead	of	returning	a	value.

Also	notice	that	the	self	parameter	is	never	described	in	the	Parameters:	comment.
Every	method	that	operates	on	an	object	must	have	a	self	parameter,	and	it	refers	to
the	object	on	which	the	method	operates.	Consequently	its	type	and	value	are	always
known.	When	calling	a	method	on	an	object	you	do	not	pass	the	object	as	a
parameter,	it	is	implicitly	passed	as	part	of	the	method	call.	The	move	method	of	Point,
would	be	called	like:	point_object.move(1.0,	2.5).	In	this	case	the	self	parameter	refers
to	the	point_object.


