
I’m	afraid	I’m	not	personally	qualified	to	confuse	cats,

but	I	can	recommend	an	extremely	good	service.

Mutable	and	Immutable
As	we	are	about	to	see	lists,	are	our	first	example	of	a	mutable	sequence	and	object,
now	is	a	good	time	to	discuss	mutability.	Mutability	is	the	description	of	whether	an
object’s	data	can	be	modified.

A	mutable	object	is	an	object	whose	data	is	modifiable.	The	data	can	be	modified
either	through	the	methods	of	the	object	or	through	direct	access	to	the	data	itself.
An	immutable	object	is	an	object	where	the	data	cannot	be	modified	in	anyway.
Strings	are	examples	of	immutable	objects.	It	is	not	possible	to	modify	the	data	of	a
string.	We	are	about	to	meet	our	first	mutable	objects:	lists.

Lists

Lists	are	mutable	sequences.	We	can	access	elements	at	a	particular	index	as	we	did
with	strings	and	use	slicing,	but	we	can	also	modify	a	list	by	changing	elements	or	by
adding	and	removing	elements.

Here	are	some	examples	of	lists	in	action:

>>>	a	=	[1,2,3,4]
>>>	type(a)
<class	'list'>
>>>	a[0]
1
>>>	a[-1]
4
>>>	a[1:3]
[2,	3]
>>>	a[::2]
[1,	3]
>>>	a[0]	=	5
>>>	a
[5,	2,	3,	4]
>>>	a.append(7)
>>>	a
[5,	2,	3,	4,	7]
>>>	a.pop(3)
4
>>>	a
[5,	2,	3,	7]
>>>	a.insert(1,9)
>>>	a
[5,	9,	2,	3,	7]
>>>	a.sort()
>>>	a
[2,	3,	5,	7,	9]
>>>

The	first	example	shows	the	syntax	for	lists	and	the	type,	the	next	four	examples	look
up	information	in	the	list	using	indexing	and	slicing.	In	the	next	example,	we	see
indexing	used	on	the	left	hand	side	of	an	assignment	statement.	The	semantics	is	that
the	value	stored	at	the	supplied	index	is	updated	with	the	value	on	the	right	hand	side

of	the	assignment.	The	last	four	examples	use	methods	of	the	list	class	to	perform
more	operations	on	the	list.

The	first	of	these	is	the	append	method.	The	append	method	adds	the	item	that	is	the
argument	to	the	end	of	the	list.	This	is	followed	by	the	pop	method.	Pop	removes	the
item	at	the	given	index	from	the	list	and	returns	that	item.	Another	way	to	add	items
to	the	list	is	the	insert	method.	Insert	takes	an	index	and	an	item	as	arguments	and
inserts	the	item	at	the	given	index,	pushing	the	other	items	down	the	list.	The	last
example	shows	how	we	can	sort	the	elements	—	arrange	them	in	order.

Notice	how	all	the	methods	and	operations	performed	on	the	list	modify	the	list	stored
in	the	variable	being	used	and	most	do	not	return	anything.	Compare	this	to	strings,
where	all	methods	and	operations	return	a	new	item	and	do	not	change	the	original
string	in	the	variable.

Python	also	includes	a	function	for	converting	any	sequence	into	a	list	of	the	objects
in	that	sequence.

>>>	list("spam")
['s',	'p',	'a',	'm']
>>>	list((1,	7,	8,	42))
[1,	7,	8,	42]

Because	lists	are	sequences	we	can	iterate	over	a	list	using	a	for	loop.

>>>	for	i	in	[0,	1,	2,	3,	4]	:
				print(i)

0
1
2
3
4

A	for	loop	is	not	much	good	if	we	do	not	do	anything	with	the	items.	Here	is	an
example	of	taking	a	list	of	numbers	and	generating	a	new	list	with	all	the	numbers
from	the	original	list	squared.

>>>	x	=	[2,	5,	8,	14,	18]
>>>	y	=	[]
>>>	for	i	in	x	:
				y.append(i	**	2)

>>>	y
[4,	25,	64,	196,	324]

Range

Because	iterating	over	sequences	of	numbers	is	very	common,	Python	comes	with	a
function	for	generating	a	sequence	of	numbers.	This	function	is	called	range.	range
generates	a	special	object	that	is	iterable,	meaning	we	can	loop	over	the	elements	in
the	range	using	the	for	loop.

>>>	for	i	in	range(10)	:
				print(i,	end="	")

0	1	2	3	4	5	6	7	8	9	

In	short,	range	creates	an	object	that	can	be	looped	through	that	contains	a	sequence
of	numbers	from	a	start	number	up	to	but	not	including	a	given	end	number.	The	end
number	is	required	and	is	excluded	from	the	sequence	as	usually	we	use	range	to
generate	indices.	The	default	start	number	is	zero;	this	is	also	for	generating	indices
as	indexing	starts	at	zero.	The	step	size	can	also	be	changed,	enabling	us	to	skip
numbers	instead	of	going	one	number	at	a	time.	This	can	be	seen	in	the	following
examples.	Note,	to	simplify	these	examples	the	list	function	has	been	used.

>>>	list(range(5))
[0,	1,	2,	3,	4]
>>>	list(range(1,	10))
[1,	2,	3,	4,	5,	6,	7,	8,	9]
>>>	list(range(1,	10,	3))
[1,	4,	7]
>>>	list(range(10,	1	,-1))
[10,	9,	8,	7,	6,	5,	4,	3,	2]
>>>

range	Syntax

range(start,	end,	step_size)	

start	is	optional	and	defaults	to	0,	step_size	is	optional	and	defaults	to	1

Semantics

Generates	an	iterable	sequence	of	numbers.	If	only	end	is	given,	then	the
sequence	will	start	at	0	go	up	to	but	not	including	end.	If	start	and	end	are	given,
then	the	sequence	will	start	at	start	and	go	up	to	but	not	including	end.	If	all
three	options	are	given	then	the	sequence	will	start	at	start	and	go	up	to	but
not	including	end	with	a	given	step_size.

Pass	by	Reference

The	following	example	is	of	a	function	that	takes	a	list	and	a	number	and	adds	all
numbers	from	0	up	to	but	not	including	that	number	to	the	list.

def	add_to(existing_list,	num)	:
				"""Adds	numbers	0	to	'num'	to	the	end	of	'list'
				Parameters:
								existing_list	(list):	The	list	to	which	numbers	will	be	added.
								num	(int):	The	number	up	to	which	will	be	added	to	'existing_list'.
				Examples:
								>>>	a_list	=	[]
								>>>	add_to(a_list,	4)
								>>>	a_list
								[0,	1,	2,	3]
				"""

				for	i	in	range(num)	:
								existing_list.append(i)

After	saving	the	file	as	add_to.py	and	running	here	is	a	test.

>>>	a_list	=	[3,	5,	6,	87,	1,	5]
>>>	add_to(a_list,	5)
>>>	a_list
[3,	5,	6,	87,	1,	5,	0,	1,	2,	3,	4]

Notice	how	even	though	the	function	does	not	return	anything	the	list	is	modified
simply	by	passing	it	to	the	function.	We	say	that	objects	in	Python	are	passed	by
reference,	which	means	that	objects	passed	into	functions	are	passed	directly.
Consequently,	a	mutable	object,	which	is	changed	inside	a	function	body,	will	still	be
changed	after	the	function	call.	In	contrast,	some	programming	languages	use	a	pass
by	value	strategy,	where	a	copy	of	the	object	is	passed	into	functions,	so	any
modifications	will	not	affect	the	original	object.	The	add_to	function	is	what	is	often
called	a	procedure,	rather	than	a	function,	because	it	does	not	return	a	value.	In
Python,	functions	or	procedures	always	return	a	value,	even	if	there	is	no	return
statement.	Procedures,	like	this	example,	return	None	if	there	is	no	return	line.	None	is
an	instance	of	a	special	type	in	Python	called	NoneType	which	has	only	one	value,	None.

>>>	type(None)
<class	'NoneType'>
>>>	a	=	None
>>>	a
>>>	
>>>	help(None)
Help	on	NoneType	object:

class	NoneType(object)
	|		Methods	defined	here:
	|		
	|		__bool__(self,	/)
	|						self	!=	0
	|		
	|		__new__(*args,	**kwargs)	from	builtins.type
	|						Create	and	return	a	new	object.		See	help(type)	for	accurate	signature.
	|		
	|		__repr__(self,	/)
	|						Return	repr(self).

None	is	treated	specially	by	the	interpreter.	The	second	example	shows	that	anything
that	evaluates	to	None	is	not	printed	to	the	interpreter.

Pass	by	Reference

If	a	list	is	passed	into	a	function,	any	changes	made	to	that	list	inside	the
function	will	affect	the	list	outside	of	the	function,	because	lists	are	mutable.

