
Word	association	football

Dictionaries
A	dictionary	is	similar	to	a	sequence,	as	it	can	be	indexed.	The	difference	is	that,
instead	of	being	indexed	by	0,	1,	2,	etc.;	it	is	indexed	by	keys.	(Dictionaries	cannot	be
sliced.)	A	dictionary	is	really	a	mapping	from	keys	to	values.	Dictionary	keys	can
be	any	immutable	type	—	for	example	strings	or	numbers,	while	values	can	be	of
any	type.	Dictionaries	are	used	for	storing	and	retrieving	information	based	on	a	key.
For	this	reason,	there	can	be	no	duplicates	in	the	keys,	but	there	can	be	duplicates	in
the	values.

Here	are	some	examples	of	dictionaries	in	action	using	a	phone	book	as	an	example.

>>>	phone	=	{'Eric'	:	7724,	'John'	:	9224,	'Graham'	:	8462}
>>>	phone
{'John':	9224,	'Graham':	8462,	'Eric':	7724}
>>>	type(phone)
<class	'dict'>
>>>	phone['John']
9224
>>>	phone['Terry']

Traceback	(most	recent	call	last):
		File	"<pyshell#4>",	line	1,	in	<module>
				phone['Terry']
KeyError:	'Terry'
>>>	phone['Terry']	=	6352
>>>	phone['Terry']
6352
>>>	phone
{'John':	9224,	'Graham':	8462,	'Eric':	7724,	'Terry':	6352}

The	first	example	shows	one	way	of	constructing	a	dictionary	—	an	open	brace	(curly
bracket)	followed	by	a	sequence	of	key	:	value	pairs	followed	by	a	closed	brace.
Notice	how	when	the	dictionary	is	printed,	it	is	not	in	the	same	order	that	it	was
created	in.	This	is	due	to	the	way	dictionaries	are	stored	in	memory.	They	are	not
necessarily	stored	in	any	particular	order.	The	third	example	shows	accessing	the
dictionary	using	the	square	bracket	notation.	The	next	example	shows	that,	using	the
square	bracket	notation,	if	a	key	is	not	in	the	dictionary	it	will	raise	an	error.
However,	if	a	key	is	not	in	the	dictionary	it	can	be	added	(or	if	the	key	is	in	the
dictionary	then	its	value	is	updated)	using	the	square	bracket	notation	as	shown	in
the	last	example.

The	next	couple	of	examples	show	other	methods	of	creating	a	dictionary.

>>>	phone	=	dict(Eric=7724,	John=9224,	Graham=8462)
>>>	phone
{'John':	9224,	'Graham':	8462,	'Eric':	7724}
>>>	phone	=	dict([('Eric',	7724),	('John',	9224),	('Graham',	8462)])
>>>	phone
{'John':	9224,	'Graham':	8462,	'Eric':	7724}

The	first	example	shows	that	a	dictionary	can	be	created	using	the	dict	function	with

a	sequence	of	key=value	pairs	as	arguments.	The	second	example	shows	that	the	dict
function	can	also	be	used	with	a	single	sequence	of	(key,	value)	pairs	as	an	argument.

The	next	few	examples	show	a	few	methods	of	dictionaries	as	well	as	a	few	examples
of	for	loops	on	dictionaries.

>>>	for	key	in	phone	:
				print(key,	phone[key])

John	9224
Graham	8462
Eric	7724
>>>	phone.keys()
dict_keys(['Graham',	'John',	'Eric'])
>>>	phone.items()
dict_items([('Graham',	8462),	('John',	9224),	('Eric',	7724)])
>>>	for	item	in	phone.items()	:
				print(item)

('Graham',	8462)
('John',	9224)
('Eric',	7724)

The	first	example	shows	using	a	for	loop	directly	on	a	dictionary.	The	loop	variable	key
becomes	each	key	in	the	dictionary	in	turn.	This	prints	out	all	the	key,	value	pairs	of
the	dictionary.	This	is	the	most	common	method	of	looping	through	dictionaries.	The
next	two	examples	show	the	keys	and	items	dictionary	methods.	These	two	methods
return	a	special	class	(similar	to	that	of	range),	but	as	can	be	seen	they	contain	a
sequence	of	all	the	keys	or	all	the	key,	value	pairs	that	are	known	as	items.	These
methods	(and	a	similar	values	are	included	to	provide	an	efficient	way	of	getting	the
keys,	values,	or	both	and	looping	through	them,	as	shown	in	the	last	example.	They
are	rarely	used	in	any	other	way.

Using	Dictionaries

Let’s	start	with	a	simple	example	of	a	function	that	takes	a	filename	and	creates	a
dictionary	where	the	keys	are	the	line	numbers	and	the	values	are	the	corresponding
lines.	Below	is	the	function	definition.

def	get_lines(filename)	:
				"""Return	a	dictionary	containing	each	line	in	the	file	as	values
				and	the	corresponding	line	number	as	keys.

				Parameters:
								filename	(str):	Name,	including	path,	of	the	file	to	be	opened.

				Return:
								dict:	Dictionary	containing	the	contents	of	the	file.

				Preconditions:
								'filename'	is	the	name	of	a	file	that	can	be	opened	for	reading.
				"""
				lines	=	{}
				f	=	open(filename,	'r')
				for	i,	line	in	enumerate(f)	:
								lines[i]	=	line.strip()
				f.close()
				return	lines

The	first	line	creates	an	empty	dictionary,	lines,	for	us	to	store	our	lines	in.	We	then
open	the	filename	in	universal	read	mode.	Using	a	for	loop,	along	with	the	enumerate
function	seen	before,	the	index	and	line	is	easily	obtained.	We	then	use	the	square
bracket	notation	to	added	the	stripped	line	as	the	value	to	the	dictionary,	with	the
index	(being	the	line	number)	as	the	key.	The	line	was	stripped	using	the	strip	method
of	strings,	as	this	is	more	useful	if	we	were	to	do	anything	more	with	this	dictionary.
The	dictionary	is	then	returned.

Having	saved	this	code	as	get_lines.py,	it	can	be	tested.	The	following	is	a	test	using
the	text.txt	file	use	previously.

>>>	lines	=	get_lines('text.txt')
>>>	lines
{0:	'Python	is	fun,',	1:	'it	lets	me	play	with	files.',
2:	'I	like	playing	with	files,',	3:	'I	can	do	some	really	fun	stuff.',
4:	'',	5:	'I	like	Python!'}
>>>	lines[5]
'I	like	Python!'

Let’s	now	look	at	a	slightly	more	complex	example.	This	example	will	look	at
determining	the	frequency	count	of	characters	in	a	file.	We	will	need	to	open	the	file
for	reading,	read	the	contents	of	the	file	and	count	how	many	times	each	character
appears.	Dictionaries	are	ideal	for	this	—	we	can	use	the	characters	as	the	keys	and
the	character	counts	as	the	associated	values.	We	will	need	to	make	use	of	the
dictionary	method	get.

>>>	d	=	{}
>>>	help(d.get)
Help	on	built-in	function	get:

get(...)
				D.get(k[,d])	->	D[k]	if	k	in	D,	else	d.		d	defaults	to	None.

>>>	d	=	{"one"	:	1,	"three"	:	3	,"many"	:	99999999999}
>>>	d["one"]
1
>>>	d.get("one")
1
>>>	d["two"]

Traceback	(most	recent	call	last):
		File	"<pyshell#4>",	line	1,	in	<module>
				d["two"]
KeyError:	'two'
>>>	print(d.get("two"))
None
>>>	d.get("two",	"that	number	does	not	exist")
'that	number	does	not	exist'

The	get	method	is	similar	to	the	square	bracket	notation	that	we	have	used	to	look	up
values	associated	with	a	key.	The	biggest	difference	is	that	get	does	not	raise	an	error
if	the	key	is	not	in	the	dictionary	as	the	square	bracket	notation	does.

get	Syntax

dictionary.get(key)
dictionary.get(key,	d)

Semantics

get	takes	in	a	key	as	an	argument	and	either	returns	the	value	in	dictionary
associated	with	that	key	or,	if	that	key	is	not	in	dictionary,	then	get	returns	d.	d	is
an	optional	argument	of	get	and	defaults	to	None.

Now	we	can	have	a	look	at	our	example.	The	following	is	the	required	function
definition.

def	freq_count(filename)	:
				"""Return	the	frequency	count	of	characters	occuring	in	a	file.

				Parameters:
								filename	(str):	Name,	including	path,	of	the	file	to	be	opened.

				Return:
								dict:	Frequency	of	each	character	occuring	in	the	file.

				Preconditions:
								'filename'	is	the	name	of	a	file	that	can	be	opened	for	reading.
				"""
				freq	=	{}
				file	=	open(filename,	'r')
				for	line	in	file	:
								for	char	in	line	:
												freq[char]	=	freq.get(char,	0)	+	1
				file.close()
				return	freq

The	function	starts	with	creating	an	empty	dictionary,	freq.	Then	the	function	opens
the	file	and	iterates	through	the	lines	of	the	file	with	a	for	loop.	Inside	the	for	loop	is
another	(nested)	for	loop	to	iterate	through	the	line	to	get	each	character.	Inside	that
for	loop	we	start	with	the	square	bracket	notation	for	adding	a	key,	value	pair	to	freq
using	the	char	as	the	key.	We	then	use	the	get	method	to	look	up	the	same	key	but	if	
char	is	not	in	freq	then	0	is	returned.	The	value	returned	by	get	is	incremented	by	1,
thus	incrementing	the	number	of	occurrences	of	char.	get	is	used	as	it	provides	the
perfect	base	for	this	problem.	If	the	char	is	in	freq	then	the	value	(the	count)	is
returned	and	then	has	1	added	to	it	and	then	that	new	value	is	assigned	to	the	key.	If	
char	is	not	in	freq	then	get	returns	0	which	allows	us	to	add	1	to	it	as	this	will	be	the
first	occurrence	of	char	in	the	file.

After	saving	freq.py,	it	can	be	applied	to	a	few	files	that	we	have	used	in	previous
sections.

>>>	freq_count("sgame.txt")
{'	':	125,	'\n':	9,	'1':	5,	'3':	3,	'2':	3,	'5':	3,	'4':	3,	'7':	2,	'6':	3,	
'9':	4,	'8':	2}
>>>	freq_count("text.txt")
{'\n':	6,	'!':	1,	'	':	19,	',':	2,	'.':	2,	'I':	3,	'P':	2,	'a':	4,	'c':	1,
'e':	8,	'd':	1,	'g':	1,	'f':	6,	'i':	9,	'h':	4,	'k':	2,	'm':	2,	'l':	9,	'o':	4,	
'n':	6,	'p':	2,	's':	6,	'r':	1,	'u':	3,	't':	7,	'w':	2,	'y':	5}
>>>	freq_count("words.txt")
{'\n':	252,	'!':	12,	'	':	943,	"'":	40,	')':	16,	'(':	16,	'-':	7,	',':	48,	

'.':	211,	'2':	1,	'4':	1,	'?':	10,	'A':	6,	'C':	7,	'B':	6,	'E':	3,	'D':	12,	
'G':	7,	'F':	30,	'I':	15,	'H':	2,	'K':	1,	'J':	1,	'M':	31,	'L':	4,	'O':	16,	
'N':	10,	'P':	13,	'S':	14,	'R':	5,	'U':	3,	'T':	11,	'W':	8,	'V':	4,	'Y':	10,	
'a':	203,	'`':	10,	'c':	51,	'b':	40,	'e':	324,	'd':	114,	'g':	78,	'f':	48,	
'i':	134,	'h':	203,	'k':	21,	'j':	3,	'm':	38,	'l':	99,	'o':	298,	'n':	179,	'q':	5,	
'p':	48,	's':	155,	'r':	250,	'u':	98,	't':	294,	'w':	50,	'v':	15,	'y':	72,	'x':	1,	
'z':	3}

Note	that,	instead	of	reading	the	file	line-by-line,	we	could	have	read	the	entire	file
into	a	single	string,	using	read	and	processed	that	character-by-character.	However,
for	a	very	large	file	this	approach	would	generate	a	very	large	(especially	in	memory)
string.

Formatting	Strings

The	dictionaries,	especially	when	large,	do	not	print	out	very	nicely.	Let’s	write	a
function	that	takes	a	dictionary	and	displays	it	in	an	easy	to	read	format	(also	called
‘pretty	printing’).	To	be	able	to	‘pretty	print’	we	need	to	be	able	to	print	in	a
formatted	way.	We	have	seen	simple	examples	of	this	already	by	simply	printing	one
value	after	another	separated	by	commas.	Python	has	another	approach	using	the	
format	method	of	strings.	format	operates	on	a	format	string	which	has	segments
where	substitutions	are	made.	The	items	substituted	into	this	format	string	are	the
arguments	of	the	format	method.	Following	are	a	few	examples	using	the	format
method.

>>>	help(str.format)
Help	on	method_descriptor:

format(...)
				S.format(*args,	**kwargs)	->	string

				Return	a	formatted	version	of	S,	using	substitutions	from	args	and	kwargs.
				The	substitutions	are	identified	by	braces	('{'	and	'}').

>>>	a	=	10
>>>	b	=	22
>>>	c	=	42
>>>	'a	=	{0},	b	=	{1},	c	=	{2}'.format(a,	b,	c)
'a	=	10,	b	=	22,	c	=	42'
>>>	'a	=	{0},	b	=	{1},	c	=	{2}'.format(b,	c,	a)
'a	=	22,	b	=	42,	c	=	10'
>>>	'a	=	{0},	b	=	{1},	c	=	b	+	2	*	a	=	{1}	+	2	*	{0}	=	{2}'.format(a,b,c)
'a	=	10,	b	=	22,	c	=	b	+	2	*	a	=	22	+	2	*	10	=	42'
>>>	s	=	'hello'
>>>	'{0}	world,	{1}'.format(s,	c)
'hello	world,	42'
>>>	'a	=	{0},	b	=	{1},	c	=	{2}'.format(b,	c)

Traceback	(most	recent	call	last):
		File	"<pyshell#8>",	line	1,	in	<module>
				'a	=	{0},	b	=	{1},	c	=	{2}'.format(b,	c)
IndexError:	tuple	index	out	of	range
>>>	'a	=	{0},	b	=	{1},	c	=	{2}'.format(a,	b,	c,	s)
'a	=	10,	b	=	22,	c	=	42'
>>>	our_format	=	'print	{0}	everywhere,	{1}'
>>>	our_format.format(a,	s)
'print	10	everywhere,	hello'

The	first	example	is	of	the	help	description	of	the	format	method.	The	next	two
examples	use	the	format	method	to	print	three	numbers	out	with	descriptors	as	to

what	they	are.	Notice	how	the	order	of	the	arguments	of	format	is	associated	with	the
numbers	in	the	substitutions.	The	next	example	shows	that	substitutions	can	be	made
more	than	once	into	the	format	string.	The	next	example	shows	that	multiple	types
can	be	printed.	The	next	example	shows	that	if	there	are	more	substitutions	to	be
made	than	there	are	arguments	in	format	then	an	error	is	raised.	However,	the	next
example	shows	that	if	there	are	more	arguments	in	format	than	substitution	areas	then
there	is	no	error,	the	extra	values	are	ignored	as	the	example	shows	that	the	format
string	can	be	assigned	to	a	variable	and	used	later	to	format	print.

format	Syntax

string.format(sequence)

Semantics

Values	from	sequence	are	substituted	into	substitution	place	holders	in	string.
These	place	holders	are	denoted	by	numbers	starting	from	0	inside	braces
(curly	brackets).	The	index	of	the	value	in	sequence	is	the	corresponding
number	that	the	value	is	substituted.	The	string	resulting	from	the	substitutions
is	returned.

Aside:	More	Formatting	options

The	format	method,	along	with	the	format	string,	has	many	options	to	enable
different	forms	of	formatted	printing.	Following	are	examples	of	some	of	the
possible	formatting	options.

>>>	60.0/22
2.727272727272727
>>>	"2	decimal	places	-	{0:.2f}".format(60.0/22)
'2	decimal	places	-	2.73'
>>>	"5	decimal	places	-	{0:.5f}".format(60.0/22)
'5	decimal	places	-	2.72727'

It	is	possible	to	print	to	a	certain	number	of	decimal	places	by	using	a	:.nf	after
the	index	number.	n	here	is	the	number	of	decimal	places	that	are	to	be	used.
The	examples	above	show	printing	to	2	and	5	decimal	places.

>>>	"use	indexing	-	{0[3]},	{0[1]}".format("hello")
'use	indexing	-	l,	e'

Indexing	can	be	used	on	sequences	inside	the	format	string	by	indexing	the
substitution	placeholder.	The	above	example	uses	indexing	twice	during
formatting.

>>>	"give	spacing	-	{0:10},	{1:7}".format("hi",	"bye")
'give	spacing	-	hi								,	bye				'
>>>	"give	spacing	-	{0:10},	{1:7}".format("longer",	"bye")

'give	spacing	-	longer				,	bye				'

Spacing	can	be	made	around	the	items	that	are	to	be	printed	by	adding	a	:n
after	the	substitution	place	holder.	n	here	represents	the	number	of	places	that
are	required.	The	item	fills	up	the	spacing	to	its	length	then	blank	spaces	are
added	to	fill	the	rest.	Above	is	two	examples	of	printing	with	spacing	around	a
couple	of	strings.	These	are	just	a	few	of	the	possible	options	available	for
format	printing.	More	options	and	examples	are	available	at	the	Python	docs
page	for	format	strings.

Let’s	return	to	our	example.	Below	is	the	function	definition	for	‘pretty	printing	our
dictionary.

def	display_dictionary(dictionary)	:
				"""Pretty	print	'dictionary'	in	key	sorted	order.

				Parameters:
								dictionary	dict:	Dictionary	to	be	pretty	printed.
				"""
				keys	=	dictionary.keys()
				keys	=	sorted(keys)
				for	k	in	keys	:
								print('{0}		:		{1}'.format(repr(k),	dictionary[k]))

The	function	first	gets	the	keys	of	the	dictionary	and	sorts	them.	The	sorted	function
returns	a	sorted	list	of	the	given	sequence.	Now,	when	the	dictionary	is	printed,	there
is	a	nice	order	to	the	characters.	Then	it	iterates	through	the	keys	list	and	prints	them
using	format.	The	keys	are	printed	using	the	repr	function.	This	makes	the	strings	print
with	the	‘	‘	around	them,	if	we	had	printed	the	strings	directly	we	would	have	lost	the
quotes.	repr	returns	the	representation	of	the	argument.	This	can	be	seen	when	the	
disp_dict.py	file	is	saved	and	tested	as	below.

>>>	freq	=	freq_count('sgame.txt')
>>>	display_dictionary(freq)
'\n'		:		9
'	'		:		125
'1'		:		5
'2'		:		3
'3'		:		3
'4'		:		3
'5'		:		3
'6'		:		3
'7'		:		2
'8'		:		2
'9'		:		4

https://docs.python.org/3/library/string.html#formatstrings

