
Now	go	away	or	I	will	taunt	you	a	second	time

Histogram	Example
Let’s	look	at	an	example	that	combines	the	use	of	dictionaries	and	exception	handling.
This	example	is	about	statistical	analysis	of	data.	Specifically,	we	want	to	read	data
from	a	file	(one	floating	point	number	per	line)	and	produce	a	histogram	of	the	data.
To	do	this	we	want	to	subdivide	numbers	into	‘buckets’	and	count	how	many	times
data	values	fall	in	each	bucket.	For	the	program,	we	will	ask	the	user	for	the	name	of
the	file	containing	the	data	to	be	processed,	and	the	width	of	each	bucket.	For	this
example	we	will	use	the	file	data1.txt.

Aside:	Constructing	randomised	data	sets

This	file	was	constructed	as	follows.

>>>	import	random
>>>	f	=	open('data1.txt',	'w')
>>>	for	i	in	range(1000)	:
								f.write(str(random.normalvariate(0,	10))	+	'\n')

>>>	f.close()

The	random	module	contains	functions	for	producing	pseudo-random	numbers
from	different	distributions.	In	this	case,	we	use	a	normal	distribution	with
mean	0	and	standard	deviation	10.	We	write	1000	generated	random	numbers
into	the	file.	Note	we	need	to	add	a	newline	character	otherwise	all	the
numbers	will	be	on	a	single	line.

For	this	problem,	we	will	produce	a	stand-alone	program.	The	program	consists	of
three	parts:	getting	input	from	the	user,	computing	the	histogram,	and	writing	out	the
results.	Later	we	will	write	a	GUI	version	of	the	same	program.

We	start	with	the	main	part	—	a	function	that	takes	a	file	name	and	a	bucket	size	and
returns	a	dictionary	of	bucket	counts.	The	key	for	the	dictionary	will	be	the	‘bucket
position’	—	i.e.	how	many	buckets	away	from	0	this	bucket	is.	So,	for	example,	if
bucket	size	=	10,	a	value	between	0	and	10	will	be	in	bucket	0	and	a	value	between
-10	and	0	will	be	in	bucket	-1.

Here	is	the	function	definition.

def	make_histogram(filename,	bucketsize)	:
				"""Compute	the	histogram	of	the	data	in	'filename'	with	given	bucket	size.

				An	error	message	will	be	produced	if	either	the	file	cannot	be	opened
				for	reading	or	an	invalid	data	value	is	found.

				Parameters:
								filename	(str):	Name	of	the	file	from	which	data	is	read.
								bucketsize	(int):	Size	of	the	data	bucket.
								



				Return:
								dict<int,	float>:	Histogram	of	occurrences	of	data	in	file.

				Preconditions:
								bucketsize	>	0
				"""
				try	:
								file	=	open(filename,	'r')
				except	IOError	:
								print('Error:	cannot	open	'	+	filename	+	'	for	reading')
								return	{}

				hist	=	{}
				for	data_element	in	file	:
								try	:
												val	=	float(data_element)
								except	ValueError	:
												print('Error:	cannot	convert	"'	+	data_element	+	'"	to	a	float')
												return	{}
								if	val	<	0	:
												bucket	=	int((val-bucketsize)	/	bucketsize)
								else	:
												bucket	=	int(val	/	bucketsize)
								hist[bucket]	=	hist.get(bucket,	0)	+	1

				return	hist

The	first	thing	this	function	does	is	attempt	to	open	the	file.	Unlike	previous
examples,	we	have	surrounded	this	with	a	try	statement.	This	allows	us	to	catch	the
error	raised	if	the	file	cannot	be	opened	for	reading.	If	an	IOError	is	raised	then	we
print	a	simple	error	message	and	return	an	empty	dictionary.	We	then	create	an
empty	dictionary,	hist	to	store	our	data	in.	We	then	go	through	every	line	in	the	file
directly	with	a	for	loop.	The	first	part	of	the	body	of	the	for	loop	is	to	attempt	to
convert	the	line	to	a	float.	This	is	also	surrounded	in	a	try	statement	to	test	if	the	line
can	be	converted.	If	it	cannot	then	the	ValueError	is	caught	and	again	a	simple	error
message	is	printed	and	an	empty	dictionary	is	returned.	We	then	check	the	sign	of	the
number	val.	If	it	is	negative,	we	use	one	formula	for	which	bucket	it	would	belong	in;
otherwise,	we	use	a	different	formula.	This	is	because	we	use	rounding	when	we
convert	from	a	float	to	an	integer,	as	Python	always	rounds	down	we	need	to	treat	the
different	signed	numbers	differently.	The	last	part	of	the	for	loop	is	to	increase	the
count	of	how	many	items	are	in	that	particular	bucket.	This	is	the	same	as	used	in	the
character	frequency	example	above.	Finally,	we	return	hist.

Note	the	power	of	dictionaries	here	—	we	could	have	used	lists	to	store	the	bucket
counts	BUT	we	need	to	know	the	range	of	data	values	first.	This	would	have	meant
reading	the	file	twice	or	loading	all	the	data	into	another	list.	The	processing	would
also	have	been	more	complicated	as	well.	Now	we	can	save	our	program	so	far,	
histogram1.py,	and	test	the	function.	We	also	create	a	file	data2.txt	and	test	the
function	using	this	file	(it	is	a	good	idea	to	test	small	first).

>>>	make_histogram('data2.txt',	1.0)
{0:	2,	1:	1,	-1:	1}
>>>	make_histogram('data1.txt',	1.0)
{0:	41,	1:	29,	2:	35,	3:	33,	4:	45,	5:	35,	6:	43,	7:	27,	8:	33,	9:	23,
10:	17,	11:	15,	12:	10,	13:	12,	14:	23,	15:	10,	16:	6,	17:	6,	18:	7,	19:	4,	20:	8,	
21:	4,	22:	4,	23:	1,	24:	5,	25:	2,	26:	2,	27:	1,	28:	1,	29:	2,	30:	1,	34:	1,	
35:	1,	-1:	36,	-32:	1,	-30:	1,	-28:	2,	-26:	1,	-25:	2,	-24:	6,	-23:	5,	-22:	4,	
-21:	6,	-20:	2,	-19:	6,	-18:	6,	-17:	10,	-16:	18,	-15:	11,	-14:	17,	-13:	20,	
-12:	24,	-11:	30,	-10:	23,	-9:	25,	-8:	39,	-7:	40,	-6:	28,	-5:	33,	-4:	50,	-3:	35,	
-2:	32}



The	next	step	is	to	get	user	input.	Given	we	want	a	positive	number	for	the	bucket
size	we	write	the	following	function	that	checks	user	input.

def	get_bucketsize()	:
				"""Return	the	bucket	size	asked	from	the	user.

				Ensures	that	a	valid	bucket	size	is	entered.

				Return:
								float:	Number	entered	for	the	bucket	size.
				"""
				while	True	:
								user_input	=	input("Bucket	size:	")
								try	:
												size	=	float(user_input)
								except	ValueError	:
												print('Not	a	number')
												continue
								if	size	>	0	:
												break
								print('Number	must	be	positive')
				return	size

This	function	starts	with	an	infinite	while	True	loop;	this	enables	us	to	keep	asking	the
user	until	correct	input	is	given.	Then	the	user	is	prompted	for	the	bucket	size.	The
function	then	attempts	to	convert	the	bucket	size	given	by	the	user	into	a	float.	This	is
surrounded	by	a	try	statement	to	catch	a	ValueError	in	case	the	user	does	not	input	a
number.	If	the	user	input	is	not	a	number	then	a	message	is	printed	and	then	on	the
next	line	is	a	continue	statement.	continue	starts	at	the	begining	of	the	loop	body.	This
effectively	skips	all	the	code	after	the	continue,	then	since	we	are	at	the	top	of	the	loop
again	the	function	asks	the	user	again	for	a	bucket	size.	If	the	input	is	a	number,	then
it	is	tested	to	see	if	it	is	positive.	If	it	is	positive	we	break	out	of	the	while	loop	and
return	the	bucket	size.	If	it	is	not	then	we	print	out	a	message	and	the	loop	starts
again.	Saving	this	code	into	histogram2.py	we	can	do	a	few	tests.

>>>	get_bucketsize()
Bucket	size:	a
Not	a	number
Bucket	size:	-10
Number	must	be	positive
Bucket	size:	3
3.0

Loop	with	continue

If	continue	is	used	inside	the	body	of	a	loop,	when	the	continue	line	is	executed
the	loop	moves	on	to	the	next	iteration	of	the	loop	immediately.	For	while	loops,
this	simply	means	starting	the	loop	from	the	beginning,	effectively	ignoring	the
code	after	the	continue.	For	a	for	loop	it	works	like	the	while	loop	except	that	it
moves	onto	the	next	item	in	the	object	being	iterated	through.

The	last	part	is	to	pretty	print	the	resulting	histogram.	The	next	function	(similar	to
the	frequency	count	one)	does	the	job.



def	pp_histogram(histogram,	bucketsize)	:
				"""	Pretty	prints	the	histogram	using	the	size	of	the	buckets."""
				keys	=	histogram.keys()
				keys	=	sorted(keys)
				for	key	in	keys	:
								print('({0:7.2f},	{1:7.2f})	:	{2:3}'.format(
												key*bucketsize,	(key+1)*bucketsize,	histogram[key]))

This	function	first	gets	the	list	of	the	keys	from	the	dictionary,	histogram,	using	the	keys
method	of	dictionaries.	This	enables	us	to	perform	the	next	line,	which	is	to	sort	this
keys	dictionary	so	that	it	is	in	order	from	smallest	to	largest.	We	then	iterate	over	this
list	and	print	out	the	histogram	information.	The	first	two	substitutions	of	the	format
string	use	two	methods	of	the	extra	format	string	options	discussed	in	the	notes	about
the	dictionary	data	structure.	These	segments	of	the	format	string	look	like	:7.2f.	The
7	means	to	have	spacing	of	7	characters.	The	.2f	means	to	print	as	floats	to	2	decimal
places.	The	last	substitution	area	contains	the	index	number	with	a	spacing	of	3
characters.	As	the	item	to	be	printed	here	is	just	an	integer	it	needs	no	float
formatting.

Here	is	the	result	of	saving	our	histogram3.py	code	and	applying	this	function	to	the
histogram	for	data1.txt.

>>>	pp_histogram(make_histogram('data1.txt',	5.0),	5.0)
(	-35.00,		-30.00)	:			1
(	-30.00,		-25.00)	:			4
(	-25.00,		-20.00)	:		23
(	-20.00,		-15.00)	:		42
(	-15.00,		-10.00)	:	102
(	-10.00,			-5.00)	:	155
(		-5.00,				0.00)	:	186
(			0.00,				5.00)	:	183
(			5.00,			10.00)	:	161
(		10.00,			15.00)	:		77
(		15.00,			20.00)	:		33
(		20.00,			25.00)	:		22
(		25.00,			30.00)	:			8
(		30.00,			35.00)	:			2
(		35.00,			40.00)	:			1

To	complete	the	stand-alone	program	we	just	need	to	add	the	following	code	to	the
end	of	the	code	that	we	have	written	so	far.

print('Print	a	histogram\n')
filename	=	input('File	name:	')
bucketsize	=	get_bucketsize()
print('\n\n--------------------------------------------\n\n')
pp_histogram(make_histogram(filename,	bucketsize),	bucketsize)

The	complete	code	for	this	example	is	in	histogram.py.	If	we	run	the	module	from	IDLE
we	get	the	following	output	in	the	interpreter	window.

Print	a	histogram



File	name:	data1.txt
Bucket	size:	5.0

--------------------------------------------

(	-35.00,		-30.00)	:			1
(	-30.00,		-25.00)	:			4
(	-25.00,		-20.00)	:		23
(	-20.00,		-15.00)	:		42
(	-15.00,		-10.00)	:	102
(	-10.00,			-5.00)	:	155
(		-5.00,				0.00)	:	186
(			0.00,				5.00)	:	183
(			5.00,			10.00)	:	161
(		10.00,			15.00)	:		77
(		15.00,			20.00)	:		33
(		20.00,			25.00)	:		22
(		25.00,			30.00)	:			8
(		30.00,			35.00)	:			2
(		35.00,			40.00)	:			1

What	is	going	on?	Well,	all	the	expressions	in	the	file	are	evaluated	in	the	interpreter.
The	definitions	are	evaluated	and	as	a	consequence	are	added	to	the	interpreter.	The
other	expressions	are	then	evaluated	—	this	is	really	the	program	being	executed.


