
Brave	Sir	Robin	ran	away,	bravely	ran	away	away.

When	danger	reared	his	ugly	head,	he	bravely	turned	his	tail	and	fled.

Yes,	brave	Sir	Robin	turned	about,	he	turned	his	tail,	he	chickened	out.

Bravely	taking	to	his	feet,	he	beat	a	very	brave	retreat.

A	brave	retreat	by	Sir	Robin.

I/O
Files
It	is	very	common	in	programming	that	input	is	received	from	a	file	instead	of,	or	as
well	as,	user	input.	It	is	therefore	necessary	to	be	able	to	open,	read	and	save	to	files.
Python	has	a	file	object	that	enables	us	to	perform	these	tasks.

Reading	a	File

To	show	how	to	use	the	file	object	in	Python	here	are	a	few	examples	using	the	
text.txt	file.

>>>	f	=	open('text.txt',	'r')
>>>	type(f)
<class	'_io.TextIOWrapper'>
>>>	f.read()
'Python	is	fun,\nit	lets	me	play	with	files.\nI	like	playing	with	files,\nI	can	
do	some	really	fun	stuff.\n\nI	like	Python!\n'
>>>	f.close()
>>>	f.read()
Traceback	(most	recent	call	last):
		File	"<pyshell#5>",	line	1,	in	<module>
				f.read()
ValueError:	I/O	operation	on	closed	file
>>>

The	first	line	shows	opening	a	file	using	the	open	function	and	assigns	it	to	the	variable
f.	The	open	statement	takes	two	string	parameters;	one	is	the	name	of	the	file	to	be
opened.	(The	file	name	may	include	the	path	to	the	file	if	it	is	in	a	different	directory
to	the	Python	program.)	The	other	is	the	open	mode,	we	will	discuss	this	soon.	The
second	example	shows	that	f	is	a	file	object.	The	third	example	shows	one	of	the
multiple	methods	for	getting	the	data	from	the	file.	The	fourth	example	shows	closing
the	file,	it	is	important	to	close	a	file	after	the	program	is	finished	with	it.	The
last	example	shows	that	it	is	not	possible	to	perform	operations	on	a	closed	file.

open	Syntax

open(filename,	mode)	Where	filename	is	a	string	which	is	the	name	of	the	file	and	
mode	is	a	string	indicating	the	opening	mode.

Semantics



mode	is	usually	‘r’	or	‘w’	for	read	or	write	respectively.	filename	can	either	be
relative	to	the	current	working	directory	(i.e	the	directory	or	folder	from	which
the	program	is	executed)	or	can	contain	the	full	path	to	the	file.

More	Reading

As	before,	dir(f),	will	list	all	the	methods	available	for	use	with	files.	The	more	useful
ones	for	us	are	the	ones	that	allow	us	to	read	from	and	write	to	the	file.	Below	are
some	examples	of	the	read	methods	we	have	not	seen	yet.

>>>	f	=	open('text.txt',	'r')
>>>	dir(f)
['_CHUNK_SIZE',	'__class__',	'__del__',	'__delattr__',	'__dict__',	'__dir__',	
'__doc__',	'__enter__',	'__eq__',	'__exit__',	'__format__',	'__ge__',	
'__getattribute__',	'__getstate__',	'__gt__',	'__hash__',	'__init__',	'__iter__',	
'__le__',	'__lt__',	'__ne__',	'__new__',	'__next__',	'__reduce__',	'__reduce_ex__',	
'__repr__',	'__setattr__',	'__sizeof__',	'__str__',	'__subclasshook__',	
'_checkClosed',	'_checkReadable',	'_checkSeekable',	'_checkWritable',	
'_finalizing',	'buffer',	'close',	'closed',	'detach',	'encoding',	'errors',	
'fileno',	'flush',	'isatty',	'line_buffering',	'mode',	'name',	'newlines',	'read',	
'readable',	'readline',	'readlines',	'seek',	'seekable',	'tell',	'truncate',	
'writable',	'write',	'writelines']
>>>	f.readline()
'Python	is	fun,\n'
>>>	f.readline()
'it	lets	me	play	with	files.\n'
>>>	f.readline()
'I	like	playing	with	files,\n'
>>>	f.readline()
'I	can	do	some	really	fun	stuff.\n'
>>>	f.readline()
'\n'
>>>	f.readline()
'I	like	Python!\n'
>>>	f.readline()
''
>>>	f.close()
>>>	f	=	open('text.txt',	'r')
>>>	f.readlines()
['Python	is	fun,\n',	'it	lets	me	play	with	files.\n',	'I	like	playing	with	
files,\n',	'I	can	do	some	really	fun	stuff.\n',	'\n',	'I	like	Python!\n']
>>>	f.close()
>>>	f	=	open('text.txt',	'r')
>>>	for	line	in	f	:
				print(line)

Python	is	fun,

it	lets	me	play	with	files.

I	like	playing	with	files,

I	can	do	some	really	fun	stuff.

I	like	Python!

>>>	f.close()
>>>



The	first	few	examples	are	the	use	of	readline,	it	returns	one	line	of	the	file	each	time
it	is	called.	When	there	are	no	lines	left	readline	returns	an	empty	string.	The	next
example	is	of	readlines	(notice	the	extra	s).	readlines	returns	a	list	with	each	element
in	the	list	being	a	string	of	each	line	in	the	file.	Notice	how	each	line	of	the	file	ends	in
a	\n.	This	is	the	new	line	character;	it	is	the	character	that	is,	invisibly,	inserted	when
we	hit	the	Enter	(return)	key.	The	last	example	is	the	use	of	a	for	loop	to	directly
iterate	over	the	file	one	line	at	a	time.	Notice	how	there	is	an	extra	line	in	between
each	line	that	we	print.	This	is	caused	by	the	new	line	character,	\n.	print	interprets
the	new	line	and	inserts	it,	but	print	also	inserts	its	own	new	line,	therefore	we	end	up
with	two	new	lines	printed.

Writing

Now	let’s	have	a	look	at	a	method	for	writing	to	a	file:

>>>	f	=	open("lets_write.txt",	"w")
>>>	f.write("I'm	writing	in	the	file\n")
25
>>>	text	=	['look',	'more',	'words']
>>>	for	word	in	text	:
				f.write(word)

>>>	f.close()
>>>

Now	if	we	look	at	the	file	it	should	look	like	lets_write1.txt.	Notice	how	we	need	to	put
in	newlines	manually	when	required,	they	are	not	automatically	inserted.	The	write
method	returns	the	number	of	bytes	or	characters	that	it	wrote	to	the	file,	in	our
example	the	string	"I'm	writing	in	the	file\n"	is	25	characters	long.	Also,	notice	how
we	did	not	have	to	first	create	the	destination	file.	Opening	the	file	for	writing	creates
the	file	if	it	does	not	already	exist.

Let’s	look	at	another	method	of	writing	to	a	file:

>>>	f	=	open("lets_write.txt",	"w")
>>>	text	=	['many,	many	\n',	'lines\n',	'are\n',	'easily\n',	'inserted\n',
								'this	way!']
>>>	f.writelines(text)
>>>	f.close()

Now	if	we	look	at	the	file	again	it	should	look	like	lets_write2.txt.	First,	notice	that	the
data	we	wrote	before	to	the	file	is	no	longer	there,	this	is	because	‘w’	writes	from	the
start	of	the	file	and	writes	over	anything	that	is	already	there.	Notice	again	that
the	newlines	had	to	be	inserted	manually.

Read	and	Write

Let’s	look	at	an	example	that	uses	both	reading	and	writing,	with	some	functionality
to	process	the	data.	We	are	going	to	write	a	function	that	will	take	two	filenames	as
arguments	and	turn	all	the	characters	in	one	file	into	uppercase	and	write	them	into
the	other	file.	Here	is	the	code:

def	make_all_caps(in_filename,	out_filename)	:
				"""Convert	all	characters	in	'in_filename'	to	caps	and	save	to	'out_filename'.



				Parameters:
								in_filename	(string):	Name	of	the	file	from	which	to	read	the	data.
								out_filename	(string):	Name	of	the	file	to	which	the	data	is	to	be	saved.

				Preconditions:
								The	files	can	be	opened	for	reading	and	writing.
				"""
				fin	=	open(in_filename,	'r')
				fout	=	open(out_filename,	'w')
				for	line	in	fin	:
								fout.write(line.upper())
				fin.close()
				fout.close()

The	first	thing	we	do	is	open	the	in_filename	in	Universal	read	mode	for	portability.	We
then	open	the	out_filename	in	write	mode.	Next,	we	use	a	for	loop	to	iterate	over	the
lines	in	fin.	The	body	of	the	for	loop	writes	the	uppercase	version	(using	strings	upper
method)	of	each	line	of	the	input	file	(fin)	to	the	output	file	(fout).	Both	files	are	then
closed	so	that	the	file	pointers	are	not	left	open.	Saving	as	make_all_caps.py	we	can	run
an	example	using	our	text.txt	file	from	earlier.

>>>	make_all_caps('text.txt',	'text_caps.txt')

If	we	now	have	a	look	at	text_caps.txt.	it	should	have	the	contents	of	text.txt	all	in
upper-case.

Files	often	have	blank	lines	in	them	in	one	form	or	another.	When	dealing	with	files	it
is	generally	easier	to	ignore	blank	lines	than	to	attempt	to	process	them.	However,
blank	lines	are	not	really	blank,	they	contain	the	new	line	character	‘\n’.

Let’s	modify	our	code	above	to	remove	blank	lines	from	the	file	as	well	as	make	it	all
upper	case.

def	all_caps_no_blanks(in_filename,	out_filename)	:
				"""Changes	every	character	in	'in_filename'	to	all	caps,	
							removes	blank	lines	and	saves	to	'out_filename'.

				Parameters:
								in_filename	(string):	Name	of	the	file	from	which	to	read	the	data.
								out_filename	(string):	Name	of	the	file	to	which	the	data	is	to	be	saved.

				Preconditions:
								The	files	can	be	opened	for	reading	and	writing.
				"""
				fin	=	open(in_filename,	'r')
				fout	=	open(out_filename,	'w')
				for	line	in	fin	:
								if	line	!=	'\n'	:
												fout.write(line.upper())
				fin.close()
				fout.close()

Notice	the	change	to	the	function	is	the	addition	of	the	if	statement	to	check	if	the
current	line	is	equal	to	a	new	line	character.	If	it	is	not	then	we	write	the	upper	case
version	of	the	line	to	the	fout	file.	Now	if	we	run	all_caps_no_blanks1.py	on	our	text.txt
file	like	below:



>>>	all_caps_no_blanks('text.txt',	'text_caps_nb.txt')

We	should	now	have	a	file	that	looks	like	text_caps_nb.txt.

Blank	lines	might	not	just	include	new	line	characters,	they	may	also	include	other
forms	of	whitespace,	such	as	spaces	and	tabs.	If	we	run	the	previous	function	on	
words.txt	we	will	notice	that	there	are	still	blank	lines	as	some	of	them	have	spaces.

We	can	modify	the	example	again	to	work	in	these	cases	using	the	string	method	
strip.	strip	returns	a	copy	of	the	string	with	all	whitespace	removed	from	the
beginning	and	end	of	the	string.	If	the	string	incorporates	only	whitespace	then	an
empty	string	is	returned.

def	all_caps_no_blanks(in_filename,	out_filename)	:
				"""Changes	every	character	in	'in_filename'	to	all	caps,	
							removes	blank	lines	and	saves	to	'out_filename'.

				Parameters:
								in_filename	(string):	Name	of	the	file	from	which	to	read	the	data.
								out_filename	(string):	Name	of	the	file	to	which	the	data	is	to	be	saved.

				Preconditions:
								The	files	can	be	opened	for	reading	and	writing.
				"""
				fin	=	open(in_filename,	'r')
				fout	=	open(out_filename,	'w')
				for	line	in	fin	:
								if	line.strip()	:
												fout.write(line.upper())
				fin.close()
				fout.close()

Now	if	we	run	all_caps_no_blanks2.py	on	our	words.txt	file	and	words_allcaps_nb.txt	then
it	should	be	capitalised	with	no	blank	lines.

Notice	how	the	if	statement	is	simply	if	line.strip().	This	is	because	the	boolean
representation	of	an	empty	string	is	False	while	a	string	with	anything	in	it	is	True.	The
same	can	be	said	for	objects	such	as	lists,	tuples	and	more.

>>>	bool('')
False
>>>	bool('	')
True
>>>	bool('sfg')
True
>>>	bool([])
False
>>>	bool([0])
True
>>>	bool([2,5,6,3])
True
>>>	bool(())
False
>>>	bool((2,3,4))
True




