
We	interrupt	this	film	to	apologise	for	this	unwarranted	attack	by	the
supporting	feature.

Luckily,	we	have	been	prepared	for	this	eventuality,	and	are	now	taking
steps	to	remedy	it.

Sudoku	Example
We	are	now	going	to	have	a	look	at	an	example	that	will	incorporate	list	and	file
processing.	This	example	will	be	of	a	Sudoku	game	stored	in	the	file	sgame.txt.	The
pretty-printed	form	of	this	game	is	sgame.pdf.

The	first	step	is	to	write	a	function	that	takes	the	name	of	a	file	that	contains	a
Sudoku	game	and	returns	a	representation	of	the	game.	The	data	structure	we	use	to
store	the	game	is	a	list	of	lists	—	the	entries	are	rows	and	each	entry	in	a	row
represents	a	column	entry	of	the	row.	To	do	this	we	also	write	a	function	to	turn	a
string	representing	a	row	into	a	row.

def	row2list(row_string)	:
				"""Convert	a	string	representing	a	row	in	a	Sudoku	game	into	a	list.

				Parameters:
								row_string	(string):	Represents	a	single	row	in	a	Sudoku	game.

				Return:
								list<string>:	Containing	the	numbers	in	a	row	of	a	Sudoku	game.

				Preconditions:
								Numbers	in	'row_string'	are	single	digits
								and	there	is	a	single	space	separating	the	numbers.
				"""
				row	=	[]
				for	i	in	range(0,	18,	2)	:
								row.append(row_string[i])
				return	row

This	function	initialises	an	empty	list	for	collecting	the	row	entries.	Then	uses	a	for
loop	with	range	that	goes	through	every	second	number,	up	to	but	not	including	18.	As
each	entry	is	a	space	apart	in	the	string	we	only	want	every	second	character	in	that
string.	The	character	at	each	entry	position	is	then	appended	into	the	row	list.

def	read_game(filename)	:
				"""Read	the	data	for	a	Sudoku	game	from	'filename'.

				Parameters:
								filename	(string):	Name	of	the	file	from	which	to	read	the	game	data.

				Return:
								list<list<string>>:	Representation	of	a	Sudoku	game	as	a	matrix
																												(list	of	lists)	of	strings.

				Preconditions:
								The	files	can	be	opened	for	reading	and	writing.
								File	contains	9	lines	and	each	line	represents	one	row	of	the	game.
				"""
				file	=	open(filename,	'r')

				game	=	[]
				for	line	in	file	:
								game.append(row2list(line))
				file.close()
				return	game

This	function	opens	the	file	in	universal	read	mode	and	then	initialises	an	empty	list
representing	the	game	data	structure.	Then	for	every	line	in	the	file	the	row2list
function	is	called	on	the	line	to	get	the	row	list.	That	row	list	is	then	appended	to	the	
game	list	to	create	the	full	game.

Our	code	currently	looks	like	sudoku1.py.	A	couple	of	tests	of	the	functions	are	below.

>>>	row2list('1	2	3	4	5	6	7	8	9')
['1',	'2',	'3',	'4',	'5',	'6',	'7',	'8',	'9']
>>>	row2list('1	2			4	5	6	7	8		')
['1',	'2',	'	',	'4',	'5',	'6',	'7',	'8',	'	']
>>>	for	i	in	read_game('sgame.txt'):
								print(i)
								
['	',	'	',	'1',	'	',	'	',	'	',	'	',	'9',	'	']
['7',	'	',	'	',	'1',	'	',	'3',	'	',	'5',	'	']
['	',	'	',	'	',	'	',	'9',	'8',	'1',	'	',	'6']
['	',	'9',	'	',	'	',	'4',	'	',	'	',	'	',	'	']
['	',	'8',	'4',	'	',	'	',	'	',	'6',	'1',	'	']
['	',	'	',	'	',	'	',	'5',	'	',	'	',	'2',	'	']
['6',	'	',	'5',	'9',	'3',	'	',	'	',	'	',	'	']
['	',	'7',	'	',	'4',	'	',	'2',	'	',	'	',	'1']
['	',	'2',	'	',	'	',	'	',	'	',	'3',	'	',	'	']
>>>

Now	we	need	functions	to	extract	a	given	row,	column	or	3x3	block.	Adding	the
following	functions	to	our	code	will	give	us	this	functionality.	Keep	in	mind	that	the
game	data	structure	can	be	thought	of	as	a	2-dimensional	matrix.

def	get_row(row,	game)	:
				"""Return	the	indicated	'row'	from	'game'.

				Parameters:
								row	(int):	Index	of	the	row	to	extract	from	'game'.
								game	(list<list<string>>):	Matrix	representation	of	the	Sudoku	game	grid.
								
				Return:
								list<string>:	The	numbers	in	a	row	of	a	Sudoku	game.

				Preconditions:
								0	<=	'row'	<=	8
								'game'	is	a	list	representation	of	a	Sudoku	game.
				"""
				return	game[row]

This	function	simply	needs	to	return	the	rowth	index	of	game	as	game	is	a	list	of	rows.

def	get_column(col,	game)	:
				"""Return	the	column	indicated	by	'col'	from	'game'.

				Parameters:
								col	(int):	Index	of	the	column	to	extract	from	'game'.
								game	(list<list<string>>):	Matrix	representation	of	the	Sudoku	game	grid.
								
				Return:
								list<string>:	The	numbers	in	a	column	of	a	Sudoku	game.

				Preconditions:
								0	<=	'col'	<=	8
								'game'	is	a	list	representation	of	a	Sudoku	game.
			"""
				column	=	[]
				for	row	in	game	:
								column.append(row[col])
				return	column

This	is	a	bit	more	tricky	than	get_row	as	we	do	not	have	a	list	of	columns.	Therefore,
the	function	needs	to	go	through	every	row	and	collect	the	values	at	the	column	index
of	the	row.

def	get_block(row,	col,	game)	:
				"""Return	the	3x3	block	starting	at	index	[row,	col]	from	'game'.

				Parameters:
								row	(int):	Row	index	of	the	start	of	the	block	to	extract	from	'game'.
								col	(int):	Column	index	of	the	start	of	the	block	to	extract	from	'game'.
								game	(list<list<string>>):	Matrix	representation	of	the	Sudoku	game	grid.
								
				Return:
								list<string>:	The	numbers	in	a	3x3	block	of	a	Sudoku	game.

				Preconditions:
								0	<=	r	<	3	and	0	<=	c	<	3
								'game'	is	a	list	representation	of	a	Sudoku	game.
				"""
				block	=	[]
				for	block_row	in	range(3*row,	3*row+3)	:
								block.extend(game[block_row][3*col:3*col+3])
				return	block

This	function	is	even	more	complicated.	We	need	to	be	able	to	get	a	3x3	block,
therefore	we	need	to	get	three	adjacent	rows	and	the	three	adjacent	entries	from
each	of	those	rows.	The	for	loop	gets	the	rows	using	range	to	generate	indices	that
correspond	to	the	block	required.	The	3*row	is	used	as	the	block	rows	are	numbered	0,
1	or	2	down	the	game	data	structure.	This	moves	the	start	index	to	the	required
starting	row	of	the	board	that	corresponds	to	the	start	of	that	block.	The	end	row	is
simply	3	more	rows	down.	As	game	is	a	list	of	lists	representing	rows	it	can	be	directly
indexed	to	get	the	row	of	interest.	Then	slicing	can	be	used	on	that	row	to	get	the	3
adjacent	columns.	This	is	done	using	the	same	system	as	obtaining	the	rows.	The	
extend	method	of	lists	modifies	the	list	it	is	called	on	by	joining	the	list	in	its	argument
to	the	first	list	to	form	one	list.

Our	Sudoku	code	now	looks	like	sudoku2.py.	Here	are	some	tests	of	the	functions	that
we	have	just	written.

>>>	game	=	read_game('sgame.txt')
>>>	get_row(1,	game)

['7',	'	',	'	',	'1',	'	',	'3',	'	',	'5',	'	']
>>>	get_column(0,	game)
['	',	'7',	'	',	'	',	'	',	'	',	'6',	'	',	'	']
>>>	get_block(1,	2,	game)
['	',	'	',	'	',	'6',	'1',	'	',	'	',	'2',	'	']
>>>

To	finish	off	this	problem	we	look	at	the	problem	of	determining	what	possible	values
can	be	put	in	an	empty	square.	To	do	this,	we	need	to	determine	what	are	the
possibilities	based	on	entries	already	in	a	given	row,	column	or	block.	This	can	be
done	by	finding	the	difference	between	the	given	entries	and	the	valid	entries.	Below
are	the	functions	that	will	allow	us	to	do	this.

def	list_diff(list1,	list2)	:
				"""Return	the	list	of	entries	in	list1	that	are	not	in	list2	(list1	-	list2).

				A	general-purpose	list	function	that	works	for	lists	of	any	type	of	elements.
				"""
				diff	=	[]
				for	element	in	list1	:
								if	element	not	in	list2	:
												diff.append(element)
				return	diff

This	function	creates	an	empty	result	list,	diff.	The	function	then	goes	through	every	
element	in	list1	and	checks	if	it	is	in	list2.	If	element	is	not	in	list2	then	element	is
appended	to	our	result	list	diff.

#	all	the	valid	choices
ALL_CHOICES	=	['1',	'2',	'3',	'4',	'5',	'6',	'7',	'8',	'9']

def	choices(row,	column,	game)	:
				"""Return	choices	that	are	possible	at	position	indicated	by	[row,	column].

				Identify	and	return	all	the	choices	that	are	possible	at	position	
				[row,	column]	in	'game'	-	i.e.	each	choice	should	not	occur	in	the	
				indicated	'row',	'column'	or	in	the	block	containing	this	position.

				Parameters:
								row	(int):	Row	index	of	the	position	to	check.
								column	(int):	Column	index	of	the	position	to	check.
								game	(list<list<string>>):	Matrix	representation	of	the	Sudoku	game	grid.
								
				Return:
								list<string>:	The	valid	choices	at	this	position.

				Preconditions:
								0	<=	row	<=	8	and	0	<=	column	<=	8		game[row][column]	==	'	'
				"""
				block_row	=	row	/	3
				block_col	=	column	/	3
				choices	=	list_diff(ALL_CHOICES,	get_row(row,	game))
				choices	=	list_diff(choices,	get_column(column,	game))
				choices	=	list_diff(choices,	get_block(block_row,	block_col,	game))
				return	choices

This	function	starts	by	finding	the	block	that	the	coordinate	[row,	column]	is	in	and

setting	this	to	block_row	and	block_col.	Then	it	finds	all	the	choices	for	the	row	by
calling	list_diff	with	the	list	ALL_CHOICES	and	the	list	obtained	from	get_row	as
arguments.	Then	choices	is	updated	by	passing	it	into	list_diff	along	with	the	result
from	get_column	and	assigning	the	result	back	into	choices,	this	removes	all	the	non-
possible	choices	from	the	column	from	the	choices	list.	This	is	again	done	with	the
block.	This	then	leaves	all	the	choices	available	for	that	square	so	choices	is	returned.

Finally,	our	sudoku	code	looks	like	sudoku.py.	Here	results	of	some	tests	of	the	last	few
function	we	wrote.

>>>	list_diff(ALL_CHOICES,	get_row(0,	game))
['2',	'3',	'4',	'5',	'6',	'7',	'8']
>>>	list_diff(ALL_CHOICES,	get_column(0,	game))
['1',	'2',	'3',	'4',	'5',	'8',	'9']
>>>	list_diff(ALL_CHOICES,	get_block(0,	0,	game))
['2',	'3',	'4',	'5',	'6',	'8',	'9']
>>>	list_intersection(['2',	'3',	'4',	'5',	'6',	'7',	'8'],
																						['1',	'2',	'3',	'4',	'5',	'8',	'9'])
['2',	'3',	'4',	'5',	'8']
>>>	choices(0,	0,	game)
['2',	'3',	'4',	'5',	'8']
>>>

