
My	hovercraft	is	full	of	eels

Error	Handling
We	have	seen	many	errors	that	the	interpreter	has	produced	when	we	have	done
something	wrong.	In	this	case,	we	say	that	the	interpreter	has	raised	an	error.	A
typical	example	is	when	we	wish	to	use	user	input.	We	cannot	guarantee	that	the	user
will	input	values	correctly.	If	we	are	not	careful,	user	input	might	cause	an	error.
When	this	happens,	we	want	to	be	able	to	catch	the	error	(Exception)	and	deal	with	it
ourselves	(users	do	not	like	to	see	red).

To	be	able	to	do	this	we	surround	the	code	that	is	likely	to	raise	an	error	in	a	try,	
except	statement.	The	following	gives	a	couple	of	examples	of	error	handling	on	the	
int	function	that	attempts	to	convert	user	input	into	an	integer.	To	do	this	we	shall
write	a	small	function	definition	as	follows.

def	int_exception()	:
				"""Asks	for	user	input	and	attempts	to	convert	it	into	an	integer.

				Returns:
								int:	Integer	value	entered	by	user;
													or	-1	if	they	did	not	enter	an	integer.
				"""
				num	=	input("Enter	a	number:	")
				try	:
								return	int(num)
				except	Exception	:
								print("{0}	is	not	a	number".format(num))
								return	-1

This	function	simply	asks	the	user	for	a	number.	It	then	attempts	to	convert	the	input
into	an	int	and	return	it.	See	how	the	return	int(num)	is	inside	a	try	statement	and
followed	by	an	except	Exception	statement.	This	is	how	the	exception	is	caught.	If	the
block	of	code	between	the	try	and	except	lines	raises	an	exception	then	the	rest	of	the
block	is	not	executed	and	the	code	after	the	except	line	is	executed	instead.	In	this
case,	we	print	a	short	message	and	return	-1.	Saving	the	file	as	int_exception.py	we
can	perform	a	couple	of	test	as	below.

>>>	int('10')
10
>>>	int_exception()
Enter	a	number:	10
10
>>>	int('ten')

Traceback	(most	recent	call	last):
		File	"<pyshell#4>",	line	1,	in	<module>
				int('ten')
ValueError:	invalid	literal	for	int()	with	base	10:	'ten'
>>>	int_exception()
Enter	a	number:	ten
'ten	is	not	a	number'
-1



The	first	example	simply	shows	that	the	string	'10'	can	be	turned	into	an	integer.	The
next	example	shows	our	function	and	we	give	10	as	user	input	and	see	that	it	returns
10.	The	next	example	shows	then	the	string	'ten'	raises	an	error	as	it	cannot	be
converted	into	a	string.	We	then	run	our	function	again	and	see	that	we	do	not	get	the
error	but	instead	get	the	message	'ten	is	not	a	number'	and	-1	is	returned.	Note	how
we	used	except	Exception,	this	catches	any	error	that	happens.	It	is	OK	to	do	this	in
this	case	as	there	are	not	many	other	ways	this	code	can	raise	an	error.	It	is	not
always	good	practice	to	do	this,	especially	in	complex	code.	Sometimes	we	end	up
catching	errors	raised	by	mistakes	in	our	code,	not	the	user	input.	It	would	therefore,
be	better	to	state	the	exception	we	want	to	catch	rather	than	the	“catch	all”	Exception.

Exception	Handling	Syntax

try	:
				body1
except	ExceptionName	:
				body2

Semantics

Exception	handling	starts	with	a	try	statement	followed	by	a	colon.	Then	on	a
new	line,	and	indented,	is	body1,	this	is	the	body	of	code	that	is	to	be	tested	for
exceptions.	This	is	followed,	on	a	new,	de-dented	line,	by	an	except	statement
followed	by	the	ExceptionName	that	is	to	be	caught,	which	is	followed	by	a	colon.
On	a	new	line,	and	indented,	is	body2,	this	is	the	body	of	code	to	be	run	when	the
exception	is	caught.	If	all	errors	are	to	be	caught	then	the	ExceptionName	to	use	is
Exception.

Using	the	Exception

It	is	possible	to	store	the	exception	caught	so	that	information	is	able	to	be	extracted
for	use.	This	is	done	using	as.	To	demonstrate	this	we	are	going	to	modify	our	code
from	above	to	look	like	the	function	definition	below.

def	int_exception(in_num)	:
				"""Asks	user	for	a	number	and	divides	'in_num'	by	the	input.

				Parameters:
								in_num	(int):	Number	to	be	divided	by	user	input.

				Returns:
								float:	'in_num'	divided	by	the	number	entered	by	the	user;
															or	-1	if	input	is	not	an	integer	or	if	input	is	0.
				"""
				num	=	input("Enter	a	number:	")
				try	:
								num	=	int(num)
								return	in_num	/	num
				except	Exception	as	e	:
								print("Error:	{0}".format(str(e)))
								return	-1



The	function	now	takes	a	number	argument.	It	still	asks	the	user	for	a	number.	The
number	from	the	argument	is	then	divided	by	the	number	given	by	the	user	and
returned.	If	an	error	is	raised	then	it	is	caught	and	assigned	to	e.	An	error	message	is
then	returned	including	the	string	representation	of	the	error.	Saving	the	file	as	
int_exception2.py	we	can	perform	a	couple	of	test	as	below.

>>>	int_exception(15)
Enter	a	number:	10
1.5
>>>	int_exception(15)
Enter	a	number:	ten
Error:	Invalid	literal	for	int()	with	base	10:	'ten'
-1
>>>	int_exception(15)
Enter	a	number:	0
Error:	division	by	zero
-1

The	first	example	works	as	expected,	the	function	returns	1.5.	The	next	two	examples
show	the	function	outputting	an	error	message;	the	first	being	'Error:	could	not	
convert	string	to	float:	ten'	from	a	ValueError,	which	is	from	attempting	to	float	a	non
numerical	string	from	the	input	and	the	other	is	'Error:	float	division	by	zero'	from	a	
ZeroDivisionError,	which	happens	if	0	is	input	(we	can	not	divide	by	zero).

Exception	Handling	Syntax

try	:
				body1
except	ExceptionName	as	var	:
				body2

Semantics

This	works	the	same	as	using	just	try	and	except.	The	difference	is	that	the
exception,	ExceptionName,	is	assigned	to	the	variable	var.

Catching	Different	Exceptions

We	have	seen	that	it	is	possible	to	catch	every	error	raised	and	that	we	can	get
information	about	the	error.	So	how	do	we	catch	a	specific	error	that	we	know	is
possible	from	incorrect	input?	It	is	possible	to	specify	what	errors	we	want	to	catch
and	deal	with.	This	way	we	only	catch	the	errors	that	are	caused	by	incorrect	input,
rather	than	everything	and	miss	the	errors	raised	by	any	incorrect	code.

To	demonstrate	this	let’s	look	at	the	function	definition	below:

def	get_numbers(dividend)	:
				"""Asks	the	user	repeatedly	for	numbers	and	calculates	'dividend'	
				divided	by	each	number.

				Results	of	division	are	stored	in	a	list.



				The	list	is	returned	if	nothing	is	entered.

				Parameters:
								dividend	(int):	Number	to	be	divided	by	the	numbers	entered	by	user.

				Return:
								list<float>:	List	of	dividend	divided	by	each	input	number.
				"""
				results	=	[]
				while	True	:
								num	=	input("Enter	Number:	")
								if	not	num	:
												break
								try	:
												num	=	float(num)
												results.append(dividend	/	num)
								except	ValueError	:
												print("That	is	not	a	number")
								except	ZeroDivisionError	:
												print("Can't	divide	by	zero")
				return	results

This	function	takes	a	number	as	an	argument.	It	then	repeatedly	asks	for	user	input
with	input.	If	there	is	nothing	typed	then	the	while	loop	breaks.	If	something	is	typed
then	it	attempts	to	convert	the	input	to	a	float	and	then	attempts	to	divide	the
argument	number	by	the	input	number,	appending	it	to	the	list.	It	checks	for	two
different	errors,	ValueError	and	ZeroDivisionError	In	both	cases	a	simple	message	is
printed	to	tell	the	user	that	they	have	given	wrong	input.

After	saving	the	file	as	get_numbers.py	we	can	run	a	few	tests.

>>>	get_numbers(10)
Enter	Number:	2
Enter	Number:	a
That	is	not	a	number
Enter	Number:	4
Enter	Number:	0
Can't	divide	by	zero
Enter	Number:	3.5
Enter	Number:	
[5.0,	2.5,	2.857142857142857]

It	can	be	seen	in	this	example	that	if	non	numerical	inputs	are	given	then	we	get	That	
is	not	a	number.	If	0	is	input	then	the	message	is	Can’t	divide	by	zero.	Any	numerical
based	inputs	in	this	test	work.

Exception	Handling	Syntax

try	:
				body1
except	ExceptionName1	:
				body2
.
.
.
except	ExceptionNameN	:
				bodyn



Semantics

This	starts	the	same	as	exception	handling	only	there	are	repeated	except
statements	for	every	error	that	is	to	be	caught.

Multiple	except	statements	can	have	a	combination	of	assigning	the	exception	to
a	variable	or	not.

Dealing	with	Unknown	Exceptions

Sometimes	we	need	to	be	prepared	for	any	exception	that	may	happen.	We	have	seen
a	way	of	dealing	with	this	in	the	first	couple	of	exception	handling	examples	with	
except	Exception.	However,	sometimes	there	are	errors	that	we	wish	to	deal	with
specially	and	just	have	a	single	case	for	any	other	exception	that	may	occur.	We	can
modify	the	function	definition	above	to	be	able	to	demonstrate	this.

def	get_numbers(dividend)	:
				""Asks	the	user	repeatedly	for	numbers	and	calculates	'dividend'	
				divided	by	each	number.

				Results	of	division	are	stored	in	a	list.
				The	list	is	returned	if	nothing	is	entered.

				Parameters:
								dividend	(int):	Number	to	be	divided	by	the	numbers	entered	by	user.

				Return:
								list<float>:	List	of	dividend	divided	by	each	input	number.
				"""
				results	=	[]
				while	True	:
								num	=	input("Enter	Number:	")
								if	not	num	:
												break
								try	:
												num	=	float(num)
												results.append(dividend	/	num)
								except	ValueError	:
												print("That	is	not	a	number")
								except	ZeroDivisionError	:
												print("Can't	divide	by	zero")
								except	Exception	as	e	:
												print("Unknown	Error	{0}".format(str(e)))
												return	[]
				return	results

This	function	definition	is	the	same	except	that	we	have	added	an	extra	except
statement.	This	except	statement	is	another	except	Exception	like	we	have	seen	before.
The	way	this	function	now	works	is,	if	a	ValueError	or	ZeroDivisionError	error	occurs
then	it	will	behave	the	same	as	the	previous	example.	If	any	other	exception	occurs
then	the	last	except	statement	will	catch	it	and	print	out	an	error	message	and	return
an	empty	list.

Saving	now	as	get_numbers2.py	we	can	test	the	function.



>>>	get_numbers(10)
Enter	Number:	2
Enter	Number:	f
That	is	not	a	number
Enter	Number:	0
Can't	divide	by	zero
Enter	Number:	
[5.0]
>>>	get_numbers("g")
Enter	Number:	2
Unknown	Error:	unsupported	operand	type(s)	for	/:	'str'	and	'float'
[]

The	first	few	examples	are	as	before.	The	last	example	is	an	example	of	the	new
functionality.	The	function	itself	was	given	a	string	argument	when	it	was	meant	to	be
given	numbers	only.	This	created	a	different	exception	when	we	attempted	to	divide	a
string	by	a	number.	Therefore,	our	function	prints	an	error	message	and	returns	an
empty	list.

Raising	Exceptions
There	are	many	situations	where	we	might	want	an	error	to	occur.	If	a	function
receives	incorrect	input,	or	some	other	invalid	action	occurs,	it	is	better	to	let	the
function	raise	an	exception,	which	forces	another	part	of	the	code	deal	with	the
problem	(by	using	try-except	statements).	As	an	example,	we	will	revisit	the	prime
numbers	example	from	earlier.	To	test	if	a	number	is	prime,	we	wrote	this	function:

def	is_prime(num)	:
				"""Returns	True	iff	'num'	is	prime.

				Parameters:
								num	(int):	Integer	value	to	be	tested	to	see	if	it	is	prime.

				Return:
								bool:	True	if	'num'	is	prime.	False	otherwise.

				Preconditions:
								num	>	1
				"""
				i	=	2
				while	i	<	num	:
								if	num	%	i	==	0	:
												return	False
								i	=	i	+	1
				return	True

We	discussed	that	the	precondition	n	>	1	means	that	inputs	which	don’t	fit	this
criteria	could	have	unknown	consequences.	This	function	would	return	True	if	the
input	was	invalid,	and	it	would	be	the	user’s	responsibility	to	check	that	the	input	was
valid.	If	the	user	doesn’t	do	this,	there	could	be	more	disastrous	consequences	later	in
the	program.	We	will	modify	the	function	to	raise	an	error	when	the	input	is	invalid;
this	will	make	sure	any	mistakes	don’t	quietly	pass	by.

Different	types	of	exception	in	Python	serve	different	purposes.	For	example,	we	use	
ValueError	to	represent	an	inappropriate	value	(for	example,	if	n	<=	1),	and	TypeError	to
represent	an	input	of	the	wrong	type	(for	example,	a	float).

file:///github/workspace/reading/2B0_functional_decomposition


def	is_prime(num)	:
				"""Returns	True	iff	'num'	is	prime.

				Parameters:
								num	(int):	Integer	value	to	be	tested	to	see	if	it	is	prime.

				Return:
								bool:	True	if	'num'	is	prime.	False	otherwise.

				Preconditions:
								num	>	1
				"""
				if	num	<=	1	:
								raise	ValueError("Input	must	be	>	1")
				if	num	!=	int(num)	:
								raise	TypeError("Input	must	be	an	integer")

				i	=	2
				while	i	<	num	:
								if	num	%	i	==	0	:
												return	False
								i	=	i	+	1
				return	True

When	we	test	the	function	on	incorrect	inputs,	we	see	the	function	raises	the
appropriate	errors:

>>>	is_prime(-2)
Traceback	(most	recent	call	last):
		File	"<pyshell#0>",	line	1,	in	<module>
				is_prime(-2)
		File	"is_prime.py",	line	9,	in	is_prime
				raise	ValueError("Input	must	be	>	1")
ValueError:	Input	must	be	>	1
>>>	is_prime(3.14)
Traceback	(most	recent	call	last):
		File	"<pyshell#1>",	line	1,	in	<module>
				is_prime(3.14)
		File	"is_prime.py",	line	11,	in	is_prime
				raise	TypeError("Input	must	be	an	integer")
TypeError:	Input	must	be	an	integer

raise	Syntax

raise	ExceptionName(args)

Semantics

The	raise	statement	will	cause	an	exception	to	be	raised.	If	the	raise	statement
is	inside	a	try	block,	the	interpreter	will	look	for	the	appropriate	except	block	to
execute.	Otherwise,	the	function	will	exit	immediately,	and	the	exception	will
propagate,	exiting	functions	until	it	finds	a	try-except	block.	If	there	is	no
appropriate	try-except	block	to	handle	the	exception,	the	program	will	exit,	and



the	Python	interpreter	will	display	an	error	message	(Traceback	(most	recent	call	
last):...)

The	ExceptionName	should	be	a	type	of	exception	which	is	appropriate	to	the
situation.	The	args	can	be	any	number	of	arguments,	but	is	often	a	message	to
describe	what	caused	the	exception.

raise	statements	are	useful	in	the	body	of	an	if	statement	which	checks	if	a
value	is	invalid.


