
Listen.	Strange	women	lying	in	ponds	distributing	swords	is	no	basis	for	a
system	of	government.

Supreme	executive	power	derives	from	a	mandate	from	the	masses,

not	from	some	farcical	aquatic	ceremony.

Variable	Scope
Now	that	we	have	written	some	programs	we	should	describe	how	Python	keeps	track
of	all	the	variables	in	our	programs	—	what	values	they	have,	and	which	variable	are
being	talked	about	at	a	specific	point	in	our	programs.	This	is	an	issue	in	every
programming	language	and	is	typically	managed	by	using	environments	(a	data
structure)	to	maintain	information	about	the	variables	and	values	that	can	be
accessed	in	a	particular	part	of	a	program	(program	scope)	such	as	a	function	body.
The	scope	of	a	variable	describes	where	in	a	program	a	particular	variable	can	be
used.

Python	uses	dictionaries	for	its	environments	—	each	dictionary	maintains	the
mapping	from	variable	names	to	values.	Python	uses	the	term	namespace	to	refer	to
these	dictionaries.	There	is	one	global	namespace	that	keeps	information	about
everything	at	the	‘global’	level.	When	each	function	is	called	a	new	local	namespace
is	constructed	to	keep	track	of	variables	inside	the	function.	Python	comes	with	two
functions	that	extract	the	global	and	(current)	local	namespaces:	globals()	and	
locals().	Below	is	some	code	and	some	results	of	running	the	code	that	gives	an
insight	into	how	Python	keeps	track	of	variables.

>>>	a	=	10
>>>	b	=	11
>>>	def	foo(b)	:
				print('Global	namespace	=	',	globals())
				print('Local	namespace	=	',	locals())
				return	a	+	b

>>>	foo(3)
Global	namespace	=		{'__loader__':	<class	'_frozen_importlib.BuiltinImporter'>,	
'foo':	<function	foo	at	0x7f2cb35f58c8>,	'__builtins__':	<module	'builtins'	(built-
in)>,	
'__spec__':	None,	'__package__':	None,	'__doc__':	None,
'__name__':	'__main__',	'b':	11,	'a':	10}
Local	namespace	=		{'b':	3}
13
>>>	

We	can	see	that	variables	a	and	b	are	defined	in	the	global	namespace	and	b	is	also
defined	in	the	local	namespace	of	foo.	So,	why	is	the	value	of	foo(3)	equal	to	13?
Python	first	looks	in	the	local	namespace	to	see	if	a	given	variable	is	defined	there.	If
so,	it	uses	the	corresponding	value.	If	not	it	looks	in	the	global	namespace	for	a	value.
If	the	variable	is	not	in	the	global	namespace	we	get	a	familiar	error	message.	In	the
case	above,	b	is	defined	in	the	local	namespace	and	its	value	(3)	is	used.	The	variable	
a	is	not	defined	in	the	local	namespace	so	Python	looks	in	the	global	namespace,
getting	the	value	10.

Compare	the	above	example	with	the	following.



>>>	a	=	10
>>>	b	=	11
>>>	def	foo(b)	:
								a	=	a	+	3
								return	a	+	b

>>>	foo(3)

Traceback	(most	recent	call	last):
		File	"<pyshell#58>",	line	1,	in	<module>
				foo(3)
		File	"<pyshell#57>",	line	2,	in	foo
				a	=	a	+	3
UnboundLocalError:	local	variable	'a'	referenced	before	assignment
>>>	

In	this	case	we	are	trying	to	modify	a	global	variable	(i.e.	one	not	in	the	local	scope).
Python	sees	this	assignment	as	follows	—	on	the	left	hand	side	is	a	and	so	Python
treats	this	as	a	local	variable.	On	the	right	hand	side	is	an	occurrence	of	a,	but	it	has
not	been	given	a	value	in	the	local	scope	and	so	our	favorite	error	is	produced.

It	is	possible	to	modify	global	variables	as	the	following	example	shows.

>>>	a	=	10
>>>	b	=	11
>>>	def	foo(b):
				global	a
				a	=	a	+	3
				return	a	+	b

>>>	foo(3)
16
>>>	foo(3)
19
>>>	

global	and	why	not

The	global	declaration	tells	Python	to	treat	a	as	a	global	variable.	This	is	a	very
dangerous	thing	to	do	and	should	be	avoided	where	possible.	Using	global
variables	makes	it	difficult	to	understand	the	logic	of	programs	—	in	the
previous	example,	we	call	foo	twice	with	the	same	argument	but	get	different
results.


