
The	architects	themselves	came	in	to	explain	the	advantages	of	both
designs.

Class	Design
In	the	previous	sections,	we	have	used	existing	classes	(e.g.	str	and	list)	that	enable
us	to	be	able	to	write	functions	and	programs	that	do	what	we	wish.	In	this	section,
we	will	begin	to	design	our	own	classes.	Being	able	to	write	our	own	classes	is	a
useful	tool	as	not	everything	is	in	a	format	that	we	like	or	will	find	easy	to	use	for	a
particular	program	that	we	may	wish	to	write.	We	will	start	with	the	design	of	a
simple	ADT	for	a	2D	point	(an	x	and	y	coordinate).

2D	Point	Class
For	our	first	example	will	we	write	the	class	definition	for	a	2D	point.	This	class	will
require	a	constructor	(to	be	able	to	create	instances	of	the	class),	a	couple	of
accessors	that	get	the	x,	y	coordinate	of	the	point	and	a	mutator	to	move	the	point	by
a	certain	distance.	The	class	definition	is	as	follows.	Below,	we	will	discuss	this
definition	in	detail.

import	math

class	Point(object)	:
				"""A	2D	point	ADT	using	Cartesian	coordinates."""

				def	__init__(self,	x,	y)	:
								"""Construct	a	point	object	based	on	(x,	y)	coordinates.
								
								Parameters:
												x	(float):	x	coordinate	in	a	2D	cartesian	grid.
												y	(float):	y	coordinate	in	a	2D	cartesian	grid.
								"""
								self._x	=	x
								self._y	=	y

				def	x(self)	:
								"""(float)	Return	the	x	coordinate	of	the	point."""
								return	self._x

				def	y(self)	:
								"""(float)	Return	the	y	coordinate	of	the	point."""
								return	self._y

				def	move(self,	dx,	dy)	:
								"""Move	the	point	by	(dx,	dy).

								Parameters:
												dx	(float):	Amount	to	move	in	the	x	direction.
												dy	(float):	Amount	to	move	in	the	y	direction.
								"""
								self._x	+=	dx
								self._y	+=	dy

Class	definitions	start	with	the	keyword	class,	followed	by	the	class	name,	and	
(object):.	Following	this,	and	indented,	is	what	looks	like	function	definitions.	These
are	the	method	definitions	for	the	class.	Notice	the	first	argument	of	each	method
is	self:	self	is	a	reference	to	the	object	itself.	This	argument	is	needed	so	that	the



method	can	access	and	modify	components	of	the	object.	Class	names,	like	function
names,	follow	a	naming	convention.	This	convention	is	that	the	first	letter	of	each
word	in	the	class	name	is	a	capital	letter.	Methods	follow	the	same	naming	convention
as	functions.

Class	Definition	Syntax

class	ClassName(object)	:
				"""Comment"""

				def	method_1(self,	[args])	:
								method_1_body

				def	method_2(self,	[args])	:
								method_2_body

				...

Semantics

Creates	a	class	called	ClassName	to	represent	the	ADT	specified.	The	methods	of
the	class	are	method_1,	method_2,	and	so	on.	Each	method	must	have	a	parameter	
self	to	represent	the	instance	that	is	performing	the	method,	optionally
followed	by	any	other	arguments	the	method	requires.	Method	calls	of	the	form	
instance.method(arg1,	arg2,	...)	will	execute	the	body	of	the	definition	of	method
with	the	arguments	instance,	arg1,	arg2,	....	Note	that	the	value	of	the	self
parameter	is	instance.

Setting	up	a	Point

Earlier	in	the	course,	we	have	used	the	dir	function	to	list	the	methods	of	an	object,
and	saw	that	many	of	the	methods	had	double	underscores	at	the	start	and	end	of
their	names.	These	methods	each	have	a	special	meaning	in	Python,	which	allow	the
object	to	work	with	existing	Python	syntax,	such	as	arithmetic,	slicing,	and	built-in
functions.

The	first	method	that	the	Point	class	has	is	the	__init__	method.	This	is	the
constructor	method	of	the	class,	which	is	executed	when	the	object	is	created.	
__init__	takes	as	arguments	any	data	that	is	to	be	required	to	make	the	instance	of
the	class	and	creates	the	instance	variables	and	any	data	structures	required	for	the
instance	to	function.	In	this	case	__init__	takes	in	the	x,	y	coordinate	of	the	point	and
creates	two	instance	variables,	self._x	and	self._y.	Note	the	self.	at	the	start	of	the
variable	names.	self	is	required	to	access	any	variables	and	methods	of	the	instance,
as	it	is	the	reference	to	the	object	instance.	self._x	and	self._y	are	given	the	values	of	
x	and	y	respectively	from	the	inputs	into	the	constructor	(__init__	method)	of	the	Point
class.

The	underscores	on	the	instance	variables	also	have	an	informal	meaning.	In	object-
oriented	programming	it	is	often	useful	to	have	private	variables	and	methods.	This
is	data	and	methods	that	are	not	meant	to	be	accessed	from	outside	the	class	except
perhaps	via	a	non-private	method.	Python	does	not	have	a	way	of	setting	variables
and	methods	private.	Python	instead	uses	underscores	to	‘hide’	variables	and
methods.	Note:	This	is	simply	a	naming	convention	used	by	programmers	to	signify	to
readers	of	the	code	that	this	variable	or	method	is	meant	to	be	private.	It	is	possible



to	access	these	variables	and	methods	directly	if	the	number	of	underscores	is	know,
though	it	is	not	recommended	in	case	the	class	definition	changes.

The	next	two	methods	(the	x	and	y	methods)	are	our	accessors	—	they	provide	us
with	an	interface	to	access	the	class	instance	variables	from	outside	the	class
definition.	These	methods	simply	return	the	corresponding	coordinate	(either	x	or	y).
The	method	move	is	a	mutator	—	it	modifies	the	data	stored	in	the	object.	Other	than	
self,	move	also	has	the	arguments	dx	and	dy.	These	are	added	to	the	current	self._x	and
self._y,	respectively,	to	‘move’	our	point	along	a	certain	vector	to	a	new	location.

Now	we	can	save	our	code	as	point1.py	and	run	a	few	tests	to	see	it	in	action.

>>>	p	=	Point(2,	-5)
>>>	p
<__main__.Point	object	at	0x011D4710>
>>>	str(p)
'<__main__.Point	object	at	0x011D4710>'
>>>	type(p)
<class	'__main__.Point'>
>>>	p.x()
2
>>>	p.y()
-5
>>>	p.move(-3,	9)
>>>	p.x()
-1
>>>	p.y()
4

The	first	line	creates	an	instance,	p,	of	our	new	Point	class.	When	we	create	a	Point
instance,	we	are	instantiating	the	class.	The	example	shows	a	print	out	of	how
Python	represents	our	Point	class,	while	the	one	after	it	shows	Pythons	string	version
of	our	Point	class.	The	following	example	shows	the	type	of	our	Point	class.	We	then
go	and	call	the	x	and	y	methods	to	view	the	current	state	of	the	class	instance.	We
then	move	our	Point,	p,	and	then	have	a	look	at	the	new	state	of	the	class	instance.

String	Representations

The	second	and	third	examples	above	showed	how	Python	represents	our	Point	class.
The	Python	interpreter	is	using	the	default	methods	for	str	and	repr	for	the	string
representations	of	our	class.	These	are	not	particularly	nice	or	useful	representations
of	this	class	as	it	does	not	tell	us	much	about	the	instance	state.	We	can	make	our
class	have	a	better	representation	by	writing	our	own	__str__	and	__repr__	methods
into	our	class	definition.	These	two	method	names	are	used	to	define	the	behaviour	of
the	built-in	str	and	repr	functions	respectively.	The	following	method	definitions	will
provide	good	__str__	and	__repr__	representations	of	our	Point.

				def	__str__(self)	:
								"""The	'informal'	string	representation	of	the	point."""
								return	'({0},	{1})'.format(self._x,	self._y)

				def	__repr__(self)	:
								"""The	'official'	string	representation	of	the	point."""
								return	'Point({0},	{1})'.format(self._x,	self._y)

The	__str__	and	__repr__	methods	both	use	a	similar	formatted	string	to	produce	a
string	that	is	a	nice	representation	of	our	Point	class.	These	methods	are	used	when



the	functions	str	and	repr,	respectively,	are	used	on	our	Point	class.	__repr__,	ideally,
should	represent	all	the	data	important	to	the	object’s	state	and	to	be	able	to	recreate
the	object	with	that	same	state.	If	possible	we	should	also	make	it	so	that	if	the
interpreter	read	the	repr	string	back	in	and	evaluated	it,	it	would	construct	a	copy	of
the	object.

After	adding	the	above	code	to	the	class	definition	our	class	we	can	now	save	our	
point2.py	code	and	test	our	two	new	methods.

>>>	p	=	Point(-1,	4)
>>>	p
Point(-1,	4)
>>>	str(p)
'(-1,	4)'
>>>	repr(p)
'Point(-1,	4)'

The	first	example	shows	what	Python	now	returns	if	we	simply	ask	for	p.	When
something	is	evaluated	the	interpreter	uses	the	__repr__	method	of	the	class	as	is
shown	in	the	third	example.	The	second	example	shows	the	string	representation	of
our	Point	class.	Notice	that	the	repr	string	looks	just	like	the	line	created	to	make	the
Point	instance	originally.

Arithmetic	on	Points

>>>	Point(1,	3)	==	Point(1,	3)
False
>>>	p1	=	Point(2,	3)
>>>	p2	=	p1
>>>	p1	==	p2
True
>>>	p3	=	Point(2,	3)
>>>	p1	==	p3
False

The	above	examples	show	that	if	we	create	Points	with	the	same	parameters	they	are
not	equal,	even	though	the	share	the	same	state.	This	is	clearly	shown	in	the	first	and
last	example.	These	examples	return	False	as,	even	though	both	objects	have	the	same
state,	they	are	different	instances	of	the	class.	The	second	example	returns	True	as
there	are	two	variables	with	the	same	instance	of	Point	as	their	value.	The	reason	the
interpreter	behaves	this	way	is	because	the	interpreter	is	using	the	default	test	for
equality,	that	objects	are	equal	if	they	are	the	same	instance.

We	would	like	to	define	how	equality	should	work	on	points.	The	method	__eq__	is
used	to	define	the	behaviour	of	the	==	test.	It	would	also	be	useful	if	we	were	able	to
add	two	Points	together.	The	__add__	method	is	used	to	define	addition	of	objects
using	the	+	operator.	The	following	code	contains	the	two	method	definitions	for	
__add__	and	__eq__	which	will	give	us	the	functionality	we	want	when	the	+	or	==
operators	are	used.

				def	__add__(self,	other)	:
								"""Return	a	new	Point	after	adding	this	point	to	'other'.

								Perform	vector	addition	of	the	points	considered	as	vectors.
								point1	+	point2	->	Point



								Parameters:
												other	(Point):	Other	point	to	be	added	to	this	point.

								Return:
												Point:	New	point	object	at	position	of	'self'	+	'other'.
								"""
								return	Point(self._x	+	other.x(),	self._y	+	other.y())

				def	__eq__(self,	other)	:
								"""Return	True	iff	'self'	and	'other'	have	the	same	x	and	y	coords.

								point1	==	point2	->	bool
								
								Parameters:
												other	(Point):	Other	point	to	be	compared	to	this	point.

								Return:
												bool:	True	if	'self'	and	'other'	have	the	same	x	and	y	coords.
																		False	otherwise.
								"""
								return	self._x	==	other.x()	and	self._y	==	other.y()

The	__add__	method	adds	the	two	Points	together	using	vector	addition.	Then	creates	a
new	Point	and	returns	it.	The	__eq__	method	returns	True	if	the	points	have	the	same	x,
y	coordinates,	and	False	otherwise.

Here	are	some	examples	of	these	last	two	methods	after	adding	them	to	the	class
definition	and	saving	the	point3.py	file.

>>>	p1	=	Point(1,	5)
>>>	p2	=	Point(-2,	9)
>>>	p3	=	p1	+	p2
>>>	p3
Point(-1,	14)
>>>	p4	=	Point(-1,	14)
>>>	p3	==	p4
True
>>>	p1	==	p2
False
>>>	p1	+=	p2
>>>	p1	==	p4
True

First	we	create	2	instances	of	the	Point	class.	Then	we	create	a	third	by	adding	the
first	2	together.	After	creating	a	fourth	instance	of	our	Point	class	we	do	a	couple	of
tests	for	equality.	In	the	last	two	examples	we	perform	a	+=	and	then	another	test	to
demonstrate	that	p1	now	equals	p4.

Special	Methods

The	Python	interpreter	recognises	many	special	method	names	to	allow	classes
to	use	built-in	Python	syntax.	Each	of	these	names	begins	and	ends	with	two
underscores.	The	names	Python	recognises	include:	__init__(self,	[arg1,	arg2,	
...])	Constructor,	executed	when	an	instance	of	the	class	is	created.	
__str__(self)	Must	return	a	string	giving	an	“informal”	description	of	the	object.
Executed	when	str(x)	or	print(x)	are	called.	__repr__(self)	Must	return	a	string



giving	a	“formal”,	unambiguous	description	of	the	object.	Executed	when	
repr(x)	is	called,	or	when	>>>	x	is	executed	at	the	prompt.	This	string
representation	is	often	useful	in	debugging.	__add__(self,	other)	__sub__(self,	
other)	__mul__(self,	other)	__div__(self,	other)	Definition	of	addition,
subtraction,	multiplication	and	division.	Equivalent	to	self	+	other,	self	-	other,	
self	*	other,	and	self	/	other	respectively.	__lt__(self,	other)	__le__(self,	other)	
__eq__(self,	other)	__ne__(self,	other)	__gt__(self,	other)	__ge__(self,	other)
Definitions	of	comparison	operators	<,	<=,	==,	!=,	>,	>=	respectively.	For	example,	
x	<=	y	executes	the	method	call	__le__(x,	y).

We	now	consider	extending	this	ADT	by	providing	accessor	methods	for	getting	the
polar	coordinates	of	the	point.	The	polar	coordinates	specify	a	point	by	angle	and
distance	rather	than	x	and	y	coordinates.	The	new	methods	are	given	below.

				def	r(self)	:
								"""(float)	Return	the	distance	of	the	point	from	the	centre	of	the
								coordinate	system	(0,	0).
								"""
								return	math.sqrt(self._x**2	+	self._y**2)

				def	theta(self)	:
								"""(float)	Return	the	angle,	in	radians,	from	the	x-axis	of	the	point."""
								return	math.atan2(self._y,	self._x)

The	r	method	uses	mathematics	we	know	to	calculate	the	radial	position	of	the	Point
from	the	centre	of	our	coordinates.	The	theta	method	uses	the	math	libraries	atan2
method	to	find	the	angle	from	the	x-axis.	atan2	is	more	accurate	than	atan	as	atan2
returns	a	correct	angle	no	matter	what	quadrant	the	point	is	in,	whereas	atan	returns
between	pi/2	and	-pi/2	radians.

After	adding	these	methods	into	the	class	definition	and	saving,	the	file	should	now
look	like	point.py.	We	can	now	look	at	a	few	examples	of	our	last	couple	of	methods.

>>>	p	=	Point(3,	4)
>>>	p.r()
5.0
>>>	p.theta()
0.9272952180016122

The	Abstraction	Barrier

Imagine	we	now	write	some	graphics	program	that	uses	this	ADT.	Later	we	come
back	and	reconsider	the	implementation	of	the	ADT	and	decide	to	use	polar
coordinates	rather	than	x,	y	coordinates	for	the	internal	representation	of	the	data,
like	the	point_rt.py	file	here.	We	make	sure	that	the	constructor	and	the	method
interfaces	behave	in	the	same	way	as	before	(have	the	same	semantics).	Now	we	go
back	to	our	graphics	program	we	wrote.	Do	we	need	to	change	anything?	No!
Because	we	did	not	change	the	interface,	we	do	not	need	to	change	anything	in	our
graphics	program.	This	is	the	key	point	about	ADTs	—	we	have	completely	separated
the	implementation	from	the	use	of	the	ADT	via	a	well-defined	interface.	We	respect
the	abstraction	barrier!

Note:	if	our	graphics	program	directly	accessed	the	x	and	y	coordinates	instead	of
using	the	interface	then	we	would	be	in	trouble	if	we	changed	over	to	polar



coordinates	—	we	would	have	to	rethink	all	our	uses	of	Point	objects!	This	is	why	we
use	the	“private	variable”	naming	convention	to	signal	that	the	_x	and	_y	values
should	not	be	accessed.

A	Ball	Class
We	now	design	another	class	that	is	similar	to	the	one	above	in	some	ways,	but	we
would	probably	not	think	of	it	as	an	ADT	because	it	has	more	‘behaviour’.	What	we
want	to	do	here	is	to	model	a	ball	and	its	motion	on	something	like	a	billiard	table
without	pockets.

To	begin	with,	we	look	at	what	assumptions	we	will	make.	Firstly,	to	simplify	the
physics,	we	assume	no	friction	and	no	loss	of	energy	when	the	ball	bounces	off	the
table	edge.	Secondly,	we	assume	a	given	radius	of	the	ball	and	table	dimensions.
Lastly,	we	assume	a	given	positive	time	step	and	that	the	time	step	is	small	enough	to
reasonably	approximate	the	ball	movement.	For	a	first	pass	at	this	problem,	we	will
also	use	the	following	global	constants:	TOP,	LEFT,	BOTTOM,	RIGHT	and	TIMESTEP	to
describe	the	edges	of	the	table	and	the	time	step.	These,	to	Python,	are	variables	but
as	we	are	not	changing	them	in	our	code,	they	are	called	constants.	It	is	naming
convention	to	use	all	uppercase	to	indicate	constants.	We	also	assume	all	the	balls
have	the	same	radius.

Next,	we	need	to	determine	what	is	necessary	to	describe	the	state	of	the	ball.	We
need	to	know	its	position,	speed	and	direction.	Finally,	we	need	to	know	what
methods	we	will	need	—	in	other	words,	what	the	ball	interface	will	look	like.	We	will
need	accessors	to	get	the	position,	speed	and	direction	and	a	mutator	that	modifies
the	balls	state	based	on	the	given	time	step.	We	also	add	a	test	to	determine	if	this
ball	is	touching	another	ball.	To	do	this	we	require	some	simple	trigonometry	and
physics	and	so	we	will	import	the	math	module.

We	will	start	with	the	class	constructor	and	accessors	and	repr	along	with	some	of	the
base	code	as	follows.

import	math

TOP	=	0.0
LEFT	=	0.0
BOTTOM	=	2.0
RIGHT	=	4.0
TIMESTEP	=	0.1

class	Ball(object)	:
				"""A	class	for	simulating	the	movement	of	a	ball	on	a	billiard	table.

				Class	Invariant:
								0	<=	_direction	<=	2*pi
								and
								LEFT	+	radius	<=	_x	<=	RIGHT	-	radius
								and
								TOP	+	radius	<=	_y	<=	BOTTOM	-	radius
								and
								0	<=	_speed
				"""

				radius	=	0.1

				def	__init__(self,	x,	y,	speed,	direction)	:
								"""Initialise	a	ball	object	with	position,	speed	and	direction.

								Parameters:
												x	(float):	x	coordinate	starting	position	of	Ball.
												y	(float):	y	coordinate	starting	position	of	Ball.



												speed	(float):	Speed	at	which	Ball	is	moving.
												direction	(float):	Direction	in	which	Ball	is	moving.

								Preconditions:
												The	supplied	values	satisfy	the	class	invariant.
								"""
								self._x	=	x
								self._y	=	y
								self._speed	=	speed
								self._direction	=	direction

				def	get_centre_x(self)	:
								"""(float)	Return	the	x	coordinate	of	the	Ball's	centre."""
								return	self._x

				def	get_centre_y(self)	:
								"""(float)	Return	the	y	coordinate	of	the	Ball's	centre."""
								return	self._y

				def	get_speed(self)	:
								"""(float)	Return	the	speed	of	the	Ball."""
								return	self._speed

				def	get_dir(self)	:
								"""(float)	Return	the	direction	in	which	the	ball	is	travelling."""
								return	self._direction

				def	__repr__(self)	:
								"""Ball's	string	representation."""
								return	'Ball({0:.2f},	{1:.2f},	{2:.2f},	{3:.2f})'.format(
																self._x,	self._y,	self._speed,	self._direction)

Firstly,	in	the	comments	for	the	class	itself	we	have	included	a	class	invariant.	This
is	similar	to	the	loop	invariant	we	briefly	discussed	in	week	5.	The	idea	is	that	the
class	invariant	is	a	property	that	should	be	true	over	the	lifetime	of	each	object	of	the
class.	In	other	words,	it	should	be	true	when	the	object	is	first	created	and	after	each
method	is	called.	This	is	typically	a	formula	that	interrelates	the	instance	variables.
(To	shorten	the	formula	we	have	omitted	the	self.	from	the	instance	variables.)	Even
in	a	simple	class	like	this,	the	class	invariant	can	be	a	big	help	when	it	comes	to
writing	methods.	In	particular,	for	the	step	method	we	can	assume	the	class	invariant
is	true	when	the	method	is	called,	and	given	that,	we	need	to	guarantee	the	class
invariant	is	true	at	the	end	of	the	method.

The	next	part	of	the	class	is	the	assignment	to	the	radius.	This	is	a	class	variable.
Class	variables	are	variables	that	are	common	to	all	instances	of	the	class	—	all
instances	of	the	class	share	this	variable	and	if	any	instance	changes	this	variable	all
instances	‘will	see	the	change’.	As	an	example	if	we	execute	self.radius	=	0.2	than	all
ball	instances	will	now	have	that	radius.	Since	all	the	balls	have	the	same	radius,	we
make	it	a	class	variable.

The	constructor	(the	__init__	method)	initialises	the	instance	variables.	There	are
then	the	four	accessor	methods	which	return	the	values	of	the	instance	variables.	This
is	followed	by	the	__rer__	method	so	that	we	can	print	our	Ball	instances	out	nicely.

After	we	save	the	code	in	ball1.py	we	can	test	with	a	few	examples.

>>>	b	=	Ball(0,	2,	3,	1)
>>>	b
Ball(0.00,	2.00,	3.00,	1.00)
>>>	b.get_centre_x()
0
>>>	b.get_centre_y()
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>>>	b.get_dir()
1
>>>	b.get_speed()
3
>>>	b.radius
0.1

This	is	not	particularly	useful	so	let’s	look	at	writing	the	step	method	that	calculates
position	of	the	ball	in	the	next	TIMESTEP	and	moves	the	ball	to	that	location.	This
method	is	going	to	require	two	other	methods	to	enable	the	ball	to	bounce	off	the
walls	if	it	reaches	one.	The	following	is	the	code	of	the	methods.

				def	_reflect_vertically(self)	:
								"""Change	the	direction	as	the	ball	bounces	off	a	vertical	edge."""
								self._direction	=	math.pi	-	self._direction
								if	self._direction	<	0	:
												self._direction	+=	2	*	math.pi

				def	_reflect_horizontally(self)	:
								"""Change	the	direction	as	the	ball	bounces	off	a	horizontal	edge."""
								self._direction	=	2	*	math.pi	-	self._direction

				def	step(self)	:
								"""Advance	time	by	TIMESTEP	-	moving	the	ball."""

								self._x	+=	TIMESTEP	*	self._speed	*	math.cos(self._direction)
								self._y	+=	TIMESTEP	*	self._speed	*	math.sin(self._direction)
								if	self._x	<	LEFT	+	self.radius	:
												self._x	=	2	*	(LEFT	+	self.radius)	-	self._x
												self._reflectVertically()
								elif	self._x	>	RIGHT	-	self.radius	:
												self._x	=	2	*	(RIGHT	-	self.radius)	-	self._x
												self._reflectVertically()

								if	self._y		<	TOP	+	self.radius	:
												self._y	=	2	*	(TOP	+	self.radius)	-	self._y
												self._reflectHorizontally()
								elif	self._y	>	BOTTOM	-	self.radius	:
												self._y	=	2	*	(BOTTOM	-	self.radius)	-	self._y
												self._reflectHorizontally()

Notice	the	methods	_reflect_vertically	and	_reflect_horizontally	begin	with
underscores.	As	we	do	not	want	these	two	functions	to	be	accessed	outside	the	class,
we	flag	them	as	private.

These	two	methods	do	exactly	what	they	are	named.	_reflect_horizontally	reflects	the
ball	off	any	horizontal	edge.	This	method	simply	takes	the	direction	of	the	ball	away
from	2	pi,	perfectly	bouncing	the	ball	off	the	wall	at	the	same	angle	it	hit	the	wall.	
_reflect_vertically	is	a	little	trickier	as	we	need	to	make	sure	our	class	invariant	is	not
false.	To	bounce	off	a	vertical	wall	we	simply	take	our	direction	away	from	pi.	This	is
mathematically	correct	but	it	could	make	our	class	invariant	false.	For	example,	if	the
ball	is	travelling	at	pi	+	0.1	radians	and	we	do	this	bounce	then	our	direction	is	now
-0.1	radians.	As	this	is	a	negative	number	we	add	2	pi	to	it	so	that	we	get	the	positive
angle	(2	pi	-	0.1	radians).	This	is	the	same	angle	as	-0.1	radians	and	makes	our	class
invariant	true	again.

The	step	method	starts	off	updating	the	x,	y	coordinates	of	the	ball	by	increasing	the
relevant	coordinate	by	the	TIMESTEP	times	the	speed	times	the	relevant	component	of



the	direction.	Next,	it	needs	to	check	if	the	ball	has	met	a	boundary	of	the	table	so
that	the	ball	does	not	break	the	class	invariant	by	leaving	the	table.	This	is	done,	first
by	checking	if	it	has	left	a	vertical	edge	by	seeing	if	the	ball’s	x	position	is	within
radius	distance	of	a	vertical	wall.	If	it	is	then	the	x	position	is	shifted	so	that	it	is
outside	a	radius	distance	of	the	wall	and	reflected	using	the	_reflect_vertically
method.	A	similar	method	is	used	for	if	the	ball	is	on	a	horizontal	edge.

Aside:	Proving	the	Class	Invariant

Warning:	This	is	not	an	easy	proof!	We	need	to	show	that	each	method
preserves	the	class	invariant.	The	following	is	a	proof	of	each	method	and	how
they	preserve	the	class	invariant.	We	start	with	the	easier	one	—	
_reflect_horizontally.	Let	d0	and	d1	be	the	initial	and	final	values	of	
self._direction.

We	want	to	show	that	if
0	<=	d0	<=	2*pi
then
0	<=	d1	<=	2*pi
where
d1	==	2*pi	-	d0
(We	use	==>	for	'implies'	below)

0	<=	d0	<=	2*pi
==>
0	>=	-d0	>=	-2*pi											(multiplying	by	-1)
==>
2*pi	>=	2*pi	-	d0	>=	0						(adding	2*pi)

QED

We	now	prove	the	property	is	true	for	_reflect_vertically.	Here	we	let	d0	be	the
initial	value	of	self._direction,	d1	be	the	value	after	the	first	assignment	and	d2
be	the	final	value.	In	this	case	there	is	an	if	statement	involved	and	so	we	have
to	consider	two	cases:	d1	>=	0	and	d1	<	0.	The	first	case.

We	want	to	show	that	if
0	<=	d0	<=	2*pi	and	d1	>=	0
then
0	<=	d2	<=	2*pi
In	this	case	the	body	of	the	if	statement	is	not	executed	and	so
d2	==	d1	==	pi	-	d0

0	<=	d0	<=	2*pi
==>
0	>=	-d0	>=	-2*pi									(multiplying	by	-1)
==>
pi	>=	pi	-	d0	>=	-pi						(adding	pi)
==>
pi	>=	pi	-	d0	>=	0								(d1	>=	0	i.e.	pi	-	d0	>=	0)

QED

The	second	case.

We	want	to	show	that	if
0	<=	d0	<=	2*pi	and	d1	<	0
then
0	<=	d2	<=	2*pi
In	this	case	the	body	of	the	if	statement	is	executed	and	so
d2	==	2*pi	+	d1		and	d1	==	pi	-	d0	and	so	d2	==	3*pi	-	d0



d1	<	0
==>
pi	-	d0	<	0
==>
3*pi	-d0	<	2*pi												(adding	2*pi)
and
d0	<=	2*pi
==>
-d0	>=	-2*pi															(multiplying	by	-1)
==>
3*pi	-	d0	>=	pi												(adding	3*pi)
and	so
pi	<=	3*pi	-	d0	<=	2*pi

QED

Now	we	look	at	the	hardest	part	of	the	proof	—	that	the	ball	stays	on	the	table.
The	method	has	four	if	statements	and	below	we	will	only	consider	the	case
when	the	first	test	is	satisfied	—	the	other	cases	follow	in	a	similar	manner.	We
let	x0	be	the	initial	value	of	self._x,	x1	be	the	value	after	the	first	assignment	and
x2	be	the	final	value.	We	also	let	s	be	self._speed,	d	be	self._direction	and	r	be	
Ball.r.

So	we	can	assume
left+r	<=	x0	<=	right-r
and
0	<=	s*timestep	<	r
and
x1	<	left	+	r				(the	test	in	the	first	if	statement	is	true)
and	we	want	to	show
left+r	<=	x2	<=	right-r

We	have
x1	==	x0	+	s*timestep*cos(d)	and	x2	==	2*(left+r)	-	x1

Now
x1	<	left	+	r
==>
-x1	>=	-left	-	r																					(multiplying	by	-1)
==>
2*(left+r)	-	x1	>=	left+r												(adding	2*(left+r))
==>
x2	>=	left+r
(one	half	of	the	required	inequality)

We	now	need	to	show
2*(left+r)	-	x0	-	s*timestep*cos(d)	<=	right-r

left+r	<=	x0
==>
left+r	-	x0	<=	0
==>
2*(left+r)	-	x0	+	r	<=	left	+	2*r																					(adding	left	+	2*r)
==>
2*(left+r)	-	x0	+	s*timestamp	<=	left	+	2*r											(r	>=	s*timestamp)
==>
2*(left+r)	-	x0	-	s*timestamp*cos(d)	<=	left	+	2*r				(1	>=	-cos(d)	and	s*timestamp	
>=	0)
==>
x2	<=	left	+	2*r

So	provided	left+2*r	<=	right	-	r		(i.e.	right	-	left	>=	3*r)
then	the	required	property	is	true.

This	means	that,	if	we	insist	that	the	table	is	at	least	one	and	a	half	balls	long
and	wide	then	the	step	method	will	maintain	the	class	invariant.



The	point	of	this	exercise	is	to	show	that	it	is	possible	to	prove	useful	properties
about	the	class	and	therefore	of	any	object	of	the	class.	Here	we	showed	that,
provided	the	global	variables	satisfy	some	reasonable	constraints,	any	ball	from
the	Ball	class	(that	initially	satisfies	the	class	invariant)	will	stay	on	the	table.

After	adding	the	methods	and	saving	the	code	ball2.py	we	can	run	a	simple	test.

>>>	b	=	Ball(0.51,	0.51,	1.0,	math.pi/4)
>>>	for	i	in	range(25)	:
								b.step()
								print(b)

Ball(0.58,	0.58,	1.00,	0.79)
Ball(0.65,	0.65,	1.00,	0.79)
Ball(0.72,	0.72,	1.00,	0.79)
Ball(0.79,	0.79,	1.00,	0.79)
Ball(0.86,	0.86,	1.00,	0.79)
Ball(0.93,	0.93,	1.00,	0.79)
Ball(1.00,	1.00,	1.00,	0.79)
Ball(1.08,	1.08,	1.00,	0.79)
Ball(1.15,	1.15,	1.00,	0.79)
Ball(1.22,	1.22,	1.00,	0.79)
Ball(1.29,	1.29,	1.00,	0.79)
Ball(1.36,	1.36,	1.00,	0.79)
Ball(1.43,	1.43,	1.00,	0.79)
Ball(1.50,	1.50,	1.00,	0.79)
Ball(1.57,	1.57,	1.00,	0.79)
Ball(1.64,	1.64,	1.00,	0.79)
Ball(1.71,	1.71,	1.00,	0.79)
Ball(1.78,	1.78,	1.00,	0.79)
Ball(1.85,	1.85,	1.00,	0.79)
Ball(1.92,	1.88,	1.00,	5.50)
Ball(1.99,	1.81,	1.00,	5.50)
Ball(2.07,	1.73,	1.00,	5.50)
Ball(2.14,	1.66,	1.00,	5.50)
Ball(2.21,	1.59,	1.00,	5.50)
Ball(2.28,	1.52,	1.00,	5.50)

The	last	method	we	will	define	is	a	method	to	see	if	2	balls	are	touching.	This	method
will	be	useful	when	we	have	multiple	Balls.	Here	is	the	method	definition.

				def	touching(self,	other)	:
								"""(bool)	Return	True	iff	this	Ball	is	touching	other."""
								return	(((self._x	-	other.get_centre_())	**	2
																	+	(self._y	-	other.get_centre_y())	**	2)
															<=	(2	*	self.radius)	**	2)

This	method	gets	the	straight-line	distance	between	the	two	balls	and	returns	true	if
and	only	if	(iff)	the	distance	is	less	than	or	equal	to	the	distance	of	two	ball	radii.

After	adding	this	method	to	our	class	we	can	save	our	ball.py	code.

Using	the	Ball	Class

Where	things	get	really	interesting	is	when	we	create	several	instances	of	the	class.
Below	is	an	example	to	show	the	power	of	object-oriented	programming	—	once	we



have	defined	the	class	we	can	create	as	many	instances	as	we	want!

>>>	balls	=	[Ball(1.0,	1.0,	1.0,	0),
													Ball(1.2,	1.2,	1.0,	1.0),
													Ball(1.4,	1.4,	1.0,	2.0)]
>>>	balls
[Ball(1.00,	1.00,	1.00,	0.00),	Ball(1.20,	1.20,	1.00,	1.00),	Ball(1.40,	1.40,	1.00,	
2.00)]
>>>	for	b	in	balls	:	
								b.step()

>>>	balls
[Ball(1.10,	1.00,	1.00,	0.00),	Ball(1.25,	1.28,	1.00,	1.00),	Ball(1.36,	1.49,	1.00,	
2.00)]

>>>	def	some_touch(balls)	:
								for	b1	in	balls	:
																for	b2	in	balls	:
																								if	b1	!=	b2	and	b1.touching(b2)	:
																																return	True
								return	False

>>>	while	not	some_touch(balls)	:
								for	b	in	balls	:	
																b.step()

>>>	balls
[Ball(1.20,	1.00,	1.00,	3.14),	Ball(3.57,	1.49,	1.00,	4.14),	Ball(1.13,	0.91,	1.00,	
5.14)]

The	next	step	would,	of	course,	be	to	program	the	interaction	between	the	balls.	We
could	do	this	either	by	writing	a	collection	of	functions	to	manage	the	interaction	of
the	balls	and	the	motion	or	we	could	define	a	Table	class	(for	example)	which	would
contain	a	collection	of	balls	and	a	step	method	for	the	table	which	would	involve
stepping	each	ball	and	defining	how	the	balls	bounce	off	each	other.

Is	defining	a	Table	class	worthwhile?	It	could	be	argued	either	way.	If	there	was	only
ever	going	to	be	one	table	then	it	could	be	argued	that	creating	a	class	would	be
overkill.	On	the	other	hand,	collecting	all	the	information	and	behaviour	of	the	table
into	one	place	(a	class)	could	be	a	good	idea.

Summary
In	this	section	we	have	introduced	the	idea	of	class	design.	Once	we	have	defined	a
class	we	can	take	any	number	of	instances	of	the	class.	This	is	a	simple,	but	powerful
form	of	reuse.	Things	to	consider	when	designing	classes:

What	assumptions	am	I	making?
What	data	do	I	need	to	store?

Create	instance	variables	to	capture	properties	associated	with	individual
objects.
Create	class	variables	to	capture	shared	properties

Are	the	values	of	variables	interrelated	or	constrained?	—	Add	a	class	invariant
to	the	class	comments.
What	should	the	interface	look	like?	—	What	are	the	‘public’	methods?
Name	the	class	after	the	type	of	objects	it	produces.
Name	variables	after	their	roles	and	make	instance	variables	private.
What	information	does	the	constructor	need	to	create	an	object?	Add	parameters
to	the	__init__	method	and	give	them	meaningful	names.
Name	each	method	to	suggest	its	role.



Comment	each	method	before	writing	any	code!
Don’t	‘over	complicate’	methods	—	methods	should,	where	possible,	perform	just
one	task.
What	helper	methods	do	I	need?	—	make	them	private.
For	testing	purposes	write	the	__repr__	method.


