
The	Greek	shall	inherit	the	Earth

Inheritance
Introduction
We	are	going	to	look	at	a	class	that	represents	a	simple	television.	This	class	will	have
a	channel	and	a	power	state.	We	will	have	methods	to	turn	the	TV	on	and	off	and
change	the	channel	up	and	down.	The	following	is	the	class	definition.

class	TV(object)	:
				"""Representation	of	a	simple	television."""

				def	__init__(self)	:
								self._channel	=	1
								self._power	=	False

				def	turn_on(self)	:
								"""Turns	the	TV	on."""
								self._power	=	True

				def	turn_off(self)	:
								"""Turns	the	TV	off."""
								self._power	=	False

				def	channel_up(self)	:
								"""Changes	the	channel	up	by	1.
											If	the	channel	goes	above	100	then	loops	back	to	1.
								"""
								if	self._power	:
												self._channel	+=	1
												if	self._channel	>	100	:
																self._channel	=	1

				def	channel_down(self)	:
								"""Changes	the	channel	down	by	1.
											If	the	channel	goes	below	1	then	loops	back	to	100.
								"""
								if	self._power	:
												self._channel	-=	1
												if	self._channel	<	1	:
																self._channel	=	100

				def	__str__(self)	:
								if	self._power	:
												return	"I'm	a	TV	on	channel	{0}".format(self._channel)
								else	:
												return	"I'm	a	TV	that	is	turned	off"

Now	if	we	save	our	file	as	tv.py	we	can	have	a	look	at	the	functionality	of	an	object	of
this	class.

>>>	tv	=	TV()
>>>	str(tv)
"I'm	a	TV	that	is	turned	off"
>>>	tv.turn_on()

>>>	str(tv)
"I'm	a	TV	on	channel	1"
>>>	tv.channel_down()
>>>	str(tv)
"I'm	a	TV	on	channel	100"
>>>	for	i	in	range(20)	:
				tv.channel_up()

>>>	str(tv)
"I'm	a	TV	on	channel	20"

It	is	clear	that	this	TV	does	not	have	much	functionality.	As	a	TV	it	is	also	a	little
annoying	to	have	to	keep	hitting	the	change	channel	to	get	to	the	channel	of	interest.
What	if	we	wanted	another	“Deluxe	TV”	class	that	could	‘jump’	straight	to	a	channel?
One	way	to	do	this	is	to	copy	and	modify	our	code.	A	better	way	to	do	this	is	to	write	a
class	that	includes	the	same	functionality	as	our	existing	TV	class	but	with	a	little
extra.	Object-oriented	programming	does	this	easily	through	the	use	of	inheritance.
Inheritance	is	the	concept	where	one	class,	the	subclass,	‘inherits’	properties	and
methods	of	another	existing	class,	the	superclass.	This	is	another	example	of	where
we	can	reuse	existing	code	without	having	to	duplicate	it.

Let’s	now	write	a	new	class	that	represents	a	simple	Deluxe	TV	where	it	is	possible	to
‘jump’	to	a	selected	channel.	Here	is	the	class	definition.

class	DeluxeTV(TV)	:
				"""Representation	of	a	Deluxe	TV	where	the	channel	can	be	set
							without	using	up	and	down.
				"""

				def	set_channel(self,	channel)	:
								"""Sets	the	TV	channel	to	the	indicated	'channel'	if	the	TV	is	on.
											If	'channel'	is	invalid	an	error	message	is	output.
								"""
								if	self._power	:
												if	1	<	channel	<	100	:
																self._channel	=	channel
												else	:
																print("{0}	is	not	a	valid	channel".format(channel))

First	notice	in	the	line	class	DeluxeTV(TV)	we	have	TV	instead	of	object	in	the	brackets.
This	says	that	DeluxeTV	inherits	from	TV.	In	fact	every	other	class	that	we	have	written
so	far	has	inherited	from	the	object	class.	The	object	class	is	the	type	which	all	other
classes	should	inherit	from,	either	directly	or	indirectly	(as	in	this	case).	The	next
thing	to	notice	is	that	DeluxeTV	does	not	have	an	__init__	method.	As	we	are	not	adding
or	changing	any	data	structures	of	our	TV	class	we	do	not	need	an	__init__	method	as
it	uses	the	inherited	method	from	TV.	Our	new	class	simply	has	the	one	method
definition	that	allows	us	to	set	the	channel.

We	can	now	add	this	class	definition	after	our	TV	class	definition	and	save	a	
deluxe_tv.py	file	and	have	a	look	at	the	functionality	of	our	new	TV.

>>>	tv	=	DeluxeTV()
>>>	str(tv)
"I'm	a	TV	that	is	turned	off"
>>>	tv.turn_on()
>>>	str(tv)
"I'm	a	TV	on	channel	1"

>>>	tv.channel_up()
>>>	str(tv)
"I'm	a	TV	on	channel	2"
>>>	tv.set_channel(42)
>>>	str(tv)
"I'm	a	TV	on	channel	42"
>>>	tv.set_channel(200)
"200	is	not	a	valid	channel"
>>>	str(tv)
"I'm	a	TV	on	channel	42"

The	first	few	examples	show	that	we	have	not	changed	the	other	functionality	of	the
TV.	This	is	because	our	DeluxeTV	has	all	the	methods	of	our	TV.	The	last	two	examples
shows	our	new	functionality	and	that	we	can	now	‘jump’	to	any	valid	channel.

Overriding	Methods
Let’s	continue	with	our	TV	classes	and	write	a	new,	Super	Deluxe	TV	that	extends	the
functionality	of	a	DeluxeTV,	and	can	store	favourite	channels.	We	will	also	make	the
channel	up	and	down	methods	move	through	the	favourite	channels	only.	In	this	case,
not	only	will	we	need	to	add	new	methods	to	store	and	remove	favourite	channels,	but
we	will	need	to	make	different	channel_up	and	channel_down	methods.

We	can	do	this	by	redefining	channel_up	and	channel_down.	Redefining	an	existing
method	of	a	superclass	is	known	as	overriding	the	method.	This	is	useful	as	not	all
classes	want	to	have	the	same	functionality	for	each	method	of	its	superclass.	When
we	call	tv.channel_up()	and	tv.channel_down()	on	a	SuperDeluxeTV,	the	new	definitions	will
be	executed,	and	the	old	definitions	will	be	ignored.

class	SuperDeluxeTV(DeluxeTV)	:
				"""Representation	of	a	Super	Delux	TV	where	channels	can	be	saved
							to	favourites.	Channel	up	and	down	goes	through	the	favourites.
				"""

				def	__init__(self)	:
								super().__init__()
								self._favourites	=	[]										#	All	favourite	TV	channels.

				def	store(self)	:
								"""Stores	the	current	channel	as	one	of	the	favourites."""
								if	self._channel	not	in	self._favourites	and	self._power	:
												self._favourites.append(self._channel)
												self._favourites.sort()

				def	remove(self)	:
								"""Removes	the	current	channel	so	that	it	is	no	longer	a	favourite."""
								if	self._power	:
												if	self._channel	in	self._favourites	:
																self._favourites.remove(self._channel)
												else	:
																print("{0}	is	not	in	favourites".format(self._channel))

				def	channel_up(self):
								"""Moves	to	the	next	higher	favourite	channel.

											It	does	not	matter	if	the	current	channel	is	a	favourite	or	not.
											Channel	will	wrap	around	to	1	if	it	passes	MAX_CHANNEL	while	
											searching	for	the	next	higher	favourite	channel.
								"""
								if	self._power	:
												if	not	self._favourites	:

																print("No	favourites	stored")
												else	:
																while	True	:
																				self._channel	+=	1
																				if	self._channel	>	100	:
																								self._channel	=	1
																				if	self._channel	in	self._favourites	:
																								break

				def	channel_down(self)	:
								"""Moves	to	the	previous	(lower)	favourite	channel.

											It	does	not	matter	if	the	current	channel	is	a	favourite	or	not.
											Channel	will	wrap	around	to	MAX_CHANNEL	if	it	passes	1	while	
											searching	for	the	previous	favourite	channel.
								"""
								if	self._power	:
												if	not	self._favourites	:
																print("No	favourites	stored")
												else	:
																while	True	:
																				self._channel	-=	1
																				if	self._channel	<	1	:
																								self._channel	=	100
																				if	self._channel	in	self._favourites	:
																								break

				def	__str__(self)	:
								if	self._power	:
												return	"I'm	a	Super	Deluxe	TV	on	channel	{0}".format(self._channel)
								else	:
												return	"I'm	a	Super	Deluxe	TV	that	is	turned	off"

In	the	class	above,	we	also	need	to	override	the	__init__	method	so	that	the	favourites
list	will	be	created.	However,	unlike	the	channel_up	and	channel_down	methods,	we	still
want	to	keep	the	existing	__init__	functionality	from	the	DeluxeTV	and	TV	classes.	To	do
this,	we	need	to	explicitly	call	the	__init__	method	of	the	superclass	(DeluxeTV):	
super().__init__().	The	super	function	works	out	what	superclass	has	the	method
attempting	to	be	called	and	returns	that	class,	allowing	the	method	to	operate	on	the
superclass	type.	It	is	simply	required	from	then	to	input	the	inputs	required	to	create
that	subclass.	Once	that	is	done,	we	can	add	in	the	additional	code	to	create	the
favourites	list.

We	have	also	overridden	the	__str__	method	to	give	a	slightly	different	text
representation.

After	saving	our	code	as	super_deluxe_tv.py	we	can	have	a	look	at	a	few	examples	of
our	new	class.

>>>	tv	=	SuperDeluxeTV()
>>>	tv.turn_on()
>>>	str(tv)
"I'm	a	Super	Deluxe	TV	on	channel	1"
>>>	tv.channel_up()
No	favourites	stored
>>>	tv.set_channel(42)
>>>	str(tv)
"I'm	a	Super	Deluxe	TV	on	channel	42"
>>>	tv.store()
>>>	tv.set_channel(87)
>>>	tv.store()
>>>	tv.channel_up()

>>>	str(tv)
"I'm	a	Super	Deluxe	TV	on	channel	42"
>>>	tv.channel_up()
>>>	str(tv)
"I'm	a	Super	Deluxe	TV	on	channel	87"
>>>	tv.set_channel(50)
>>>	tv.channel_down()
>>>	str(tv)
"I'm	a	Super	Deluxe	TV	on	channel	42"

In	fact	we	have	already	been	overriding	methods	in	the	classes	that	we	have
previously	written.	The	__init__,	__str__,	__eq__,	etc.	methods	that	we	have	written	all
override	the	existing,	corresponding,	method	in	the	object	class.

Inheritance	Syntax

class	Class(SuperClass)	:
				...

Semantics

A	new	class,	Class,	will	be	created,	inheriting	from	SuperClass.	Instances	will	be
able	to	use	all	the	methods	and	class	variables	defined	in	the	superclass,	as	well
as	any	methods	defined	in	Class.	Instances	will	also	be	able	to	access	methods
and	class	variables	of	the	superclass	of	SuperClass,	and	so	on	through	the
superclasses	(these	are	all	indirect	superclasses	of	Class,	and	SuperClass	is	a
direct	superclass).	The	collection	of	superclass-subclass	relationships	is
known	as	the	inheritance	hierarchy.

If	Class	defines	a	method	with	the	same	name	as	one	in	a	superclass	(direct	or
indirect),	then	that	method	has	been	overridden.	When	the	method	
instance.method(arg1,	...)	is	called,	the	method	defined	in	Class	is	used.
However,	the	overridden	method	can	still	be	accessed	directly	by	calling	
super().method(arg1,	...)	

Method	Resolution	Order
When	we	override	a	method,	we	are	creating	a	new	method	with	the	same	name.	This
raises	an	issue	—	how	does	Python	determine	which	method	to	call?	Python	has	a	set
of	rules	that	determine	which	class	the	method	will	come	from,	known	as	the	Method
Resolution	Order,	or	MRO.	As	an	example,	consider	the	four	classes	below.

class	A(object)	:
				def	__init__(self,	x)	:
								self._x	=	x

				def	f(self)	:
								return	self._x

				def	g(self)	:
								return	2	*	self._x

				def	fg(self)	:
								return	self.f()	-	self.g()

class	B(A)	:
				def	g(self)	:
								return	self._x	**	2

class	C(B)	:
				def	__init__(self,	x,	y)	:
								super().__init__(x)
								self._y	=	y

				def	fg(self)	:
								return	super().fg()	*	self._y

class	D(A)	:
				def	f(self)	:
								return	-2	*	self.g()

After	saving	this	code	as	mro.py,	we	can	look	at	the	functionality	of	our	classes.	To
start	with,	let’s	just	look	at	what	an	object	of	class	A	does.

>>>	a	=	A(3)
>>>	a._x
3
>>>	a.f()
3
>>>	a.g()
6
>>>	a.fg()
-3

This	class	is	straightforward.	The	constructor	A(3)	calls	the	__init__	method,	which
creates	an	attribute	_x	with	the	value	3.	Method	f	returns	the	value	of	_x,	method	g
returns	twice	_x	and	method	fg	returns	the	difference	between	the	results	of	these
two	methods.

Now,	let’s	have	a	look	at	using	an	object	of	the	B	class.

>>>	b	=	B(3)
>>>	b._x
3
>>>	b.f()
3
>>>	b.g()
9
>>>	b.fg()
-6

Let’s	consider	what	happens	when	we	construct	the	object	B(3).	The	Python
interpreter	will	create	a	new	object	and	attempt	to	call	the	__init__	method.	However,
the	B	class	does	not	have	a	definition	of	the	__init__	method.	Python	then	looks	to	the
superclass	for	an	__init__	method.	The	superclass	is	A,	which	has	an	__init__	method.
This	__init__	method	is	called,	which	creates	an	attribute	_x	with	the	value	3.

What	happens	when	we	call	b.f()?	The	B	class	does	not	have	a	definition	of	the	f
method.	Therefore	the	interpreter	looks	in	the	superclass	A	for	an	f	method,	which	it

finds.	This	method	is	used,	which	returns	the	value	of	b.x	(which	is	3).

Next	the	g	method	is	called.	The	B	class	has	a	g	method	so	the	interpreter	uses	that	g
method,	returning	the	square	of	x,	in	this	case	9.

When	the	fg	method	is	called,	B	again	does	not	have	this	method	so	the	interpreter
looks	back	to	the	superclass	and	uses	the	fg	method	from	A,	which	returns	self.f()	-	
self.g().	Because	the	fg	method	was	called	with	a	B	object,	the	interpreter	will	look
for	f	and	g	methods	in	the	B	class.	As	before,	B	does	not	have	a	definition	of	f,	so	the
interpreter	uses	the	definition	from	A,	which	returns	3.	The	process	is	repeated	for	the
g	method	call,	but	as	the	B	class	has	a	definition	of	g,	that	method	is	called,	which
returns	9.	So	the	return	value	of	b.fg()	is	3	-	9,	which	is	-6.

Now,	let’s	look	at	using	an	object	of	the	C	class.

>>>	c	=	C(3,	5)
>>>	c._x
3
>>>	c._y
5
>>>	c.f()
3
>>>	c.g()
9
>>>	c.fg()
-30

The	C	class	inherits	from	the	B	class,	which	in	turn	inherits	from	A.	When	C(3,	5)	is
constructed,	Python	will	look	for	an	__init__	method	in	C,	which	it	finds	and	uses.	This
calls	super().__init__(3)	method.	The	super()	function	will	first	look	in	B	for	an	__init__
method.	As	B	does	not	have	an	__init__	method,	super	will	look	at	B’s	super	class,
which	is	A	for	an	__init__	method.	As	A	does	have	a	__init__	method,	super	evaluates	to
A.	Therefore,	the	super().__init__(3)	line	in	C’s	__init__	method	results	in	calling	
A.__init__(3).	A’s	__init__	will,	therefore,	set	the	value	of	the	attribute	x	to	3.	The	next
line	in	C.__init__	will	now	run,	setting	the	value	of	the	attribute	y	to	5.

When	c.f()	is	called,	C	does	not	have	an	f	method,	so	the	interpreter	looks	in	the
superclass,	B.	B	also	does	not	have	an	f	method	so	the	interpreter	looks	in	B’s
superclass,	which	is	A.	The	f	method	of	A	is	finally	used,	which	returns	the	value	of	the
attribute	_x.

The	process	is	the	same	again	for	the	g	method	call.	As	C	does	not	have	a	g	method,
the	interpreter	looks	in	the	B	class.	B	does	have	a	g	method,	so	that	is	used,	and
returns	3	**	2.

Next	is	the	fg	method	call	on	C.	This	method	first	calls	super().fg()	which	will	look	for
an	fg	method	first	in	the	B	class.	As	B	doesn’t	have	an	fg	method,	the	super	function
will	look	in	B’s	superclass,	which	is	A,	and,	therefore,	A.fg()	is	called.	This	method
follows	the	process	just	described	to	call	both	the	f	method	from	A	and	the	g	method
from	B	and	subtract	the	results	together,	performing	the	operation	3	-	9.	The	result	of
the	super().fg()	call	is	-6,	which	is	multiplied	by	the	attribute	y	(5)	to	give	-30	as	the
final	result.

Finally,	let’s	have	a	look	at	using	an	object	of	the	D	class.

>>>	d	=	D(3)
>>>	d._x
3

>>>	d.f()
-12
>>>	d.g()
6
>>>	d.fg()
-18

The	D	class	is	similar	to	the	B	class.	The	f	method	call	on	D	uses	the	f	method	defined
in	D.	This	method	calls	self.g().	D	does	not	have	a	g	method,	so	the	interpreter	calls
the	g	method	from	the	superclass	(A)	class	performing	the	operation	-2	*	2	*	3.	The	g
method	call	on	D	works	exactly	the	same	way.

When	the	fg	method	of	D	is	called	the	interpreter	uses	the	fg	method	of	A,	as	D	does
not	have	an	fg	method	defined.	This	calls	the	f	method	using	the	f	method	of	D,	which
in	turn	uses	the	g	method	of	A,	and	then	calls	the	g	method	of	A	again.	The	results	are
then	subtracted	performing	the	operation	-12	-	6.

In	summary,	the	MRO	can	be	easily	determined	by	simply	following	the	chain	of
inheritance	of	the	classes	involved,	remembering	to	always	start	at	the	class	the
method	call	is	performed	on.

Aside:	Multiple	Inheritance

Python	supports	the	ability	for	classes	to	inherit	from	more	than	one	superclass,
known	as	multiple	inheritance.	As	an	example,	consider	these	four	classes:

class	A(object)	:
				def	__init__(self,	x)	:
								self._x	=	x

				def	f(self)	:
								return	self._x

class	B(A)	:
				def	f(self)	:
								return	self._x	**	2

class	C(A)	:
				def	__init__(self,	x,	y)	:
								super().__init__(x)
								self._y	=	y

				def	g(self)	:
								return	self.f()	*	self._y

class	D(B,	C)	:
				def	info(self)	:
								print("x	=	{0},	y	=	{1}".format(self_.x,	self._y))
								print("f()	->	{0}".format(self.f()))
								print("g()	->	{0}".format(self.g()))

The	class	D	inherits	from	both	B	and	C,	which	each	inherit	from	A.	Here	is	an
interaction	with	the	D	class:

>>>	d	=	D(3,	5)
>>>	d.info()

x	=	3,	y	=	5
f()	->	9
g()	->	45

When	the	f	method	is	called,	Python	will	use	the	f	method	defined	in	B.	When
the	g	method	is	called,	Python	uses	the	g	method	defined	in	C.	This	method	calls	
self.f(),	which	will	again	be	the	method	defined	in	B.	We	see	that	without
needing	to	modify	anything	in	the	D	class,	we	have	manipulated	the	g	method
defined	in	the	C	class	to	use	the	f	method	of	B	instead	of	A.	This	technique	can
be	useful	in	certain	situations.

However,	we	must	be	very	careful	when	using	multiple	inheritance,	as	it	makes
the	MRO	much	harder	to	interpret.	If	B	and	C	were	to	both	define	the	same
method,	which	one	is	used?	If	D	overrides	this	method	and	needs	to	access	the
superclass	method,	should	super	evaluate	to	B	or	C?	Is	it	possible	for	unwanted
side-effects	to	occur?	Does	the	order	of	inheritance	matter	(class	D(B,	C):	or	
class	D(C,	B):)?

Using	multiple	inheritance	is	often	inadvisable	where	other	techniques	can	be
used	to	achieve	the	same	desired	outcome.	Some	programming	languages,	such
as	Java	and	Ruby,	do	not	support	multiple	inheritance,	as	it	can	be
unnecessarily	complex.

Writing	Exceptions
We	previously	discussed	various	types	of	exceptions,	and	how	to	use	them.	Python	has
a	range	of	built-in	exceptions	for	various	generic	purposes.	For	example,	NameError	is
raised	when	a	variable	name	is	not	found,	and	ValueError	when	an	input	is	of	an
inappropriate	value.

Often	it	is	useful	to	create	different	types	of	exception	for	specific	purposes.	In	the
following	example,	we	will	write	a	class	to	represent	a	savings	bank	account,	which
will	have	methods	for	withdrawing	and	depositing	funds,	and	accumulating	interest.
When	the	user	tries	to	withdraw	or	deposit	a	negative	amount,	we	will	raise	a	
ValueError.	When	the	user	tries	to	withdraw	too	much	money,	then	we	would	like	to
raise	a	different	type	of	error	that	represents	a	failed	withdrawal.

Python	comes	with	a	class	to	represent	exceptions,	called	Exception.	By	creating	a
class	which	inherits	from	Exception,	we	can	create	our	own	custom	exceptions.	Here	is
an	exception	for	a	failed	withdrawal:

class	WithdrawalError(Exception)	:
				"""An	exception	to	be	raised	when	a	withdrawal	fails."""
				def	__init__(self,	message,	balance):
								"""
								Parameters
												message	(str):	The	reason	for	the	error
												balance	(float):	The	balance	of	the	account	
								"""
								super().__init__(message)
								self._balance	=	balance

				def	get_balance(self)	:
								return	self._balance

The	exception	stores	a	message	detailing	why	the	transaction	failed,	and	the	balance

of	the	savings	account.	Using	this,	we	can	write	a	class	to	represent	the	savings
account:

class	SavingsAccount(object)	:
				"""A	simple	savings	account."""
				def	__init__(self,	owner,	initial_deposit,	monthly_interest)	:
								self._owner	=	owner
								self._balance	=	initial_deposit
								self._interest	=	monthly_interest

				def	get_owner(self)	:
								return	self._owner

				def	get_balance(self)	:
								return	self._balance

				def	add_interest(self)	:
								"""Add	the	monthly	interest	to	the	balance."""
								if	self._balance	>	0	:
												interest	=	self._balance	*	self._interest	/	100.0
												self._balance	+=	interest

				def	deposit(self,	amount)	:
								"""Add	a	positive	amount	to	the	balance."""
								if	amount	<	0	:
												raise	ValueError("Can't	deposit	a	negative	amount")
								self._balance	+=	amount

				def	withdraw(self,	amount)	:
								"""Subtract	a	positive	amount	from	the	balance."""
								if	amount	<	0	:
												raise	ValueError("Can't	withdraw	a	negative	amount")
								new_balance	=	self._balance	-	amount
								if	new_balance	<	0	:
												raise	WithdrawalError("Not	enough	funds	in	account",	self._balance)
								else	:
												self._balance	=	new_balance

				def	__repr__(self)	:
								repr_string	=	"SavingsAccount({0},	{1},	{2})"
								return	repr_string.format(self._owner,	self._balance,	self._interest)

We	can	then	write	functions	withdraw	and	deposit	that	the	user	can	interact	with:

def	withdraw(account,	amount)	:
				try	:
								account.withdraw(amount)
				except	ValueError	as	e	:
								print("Invalid:",	e)
				except	WithdrawalError	as	e	:
								print("Cannot	withdraw:",	e)
								print("Your	account	balance	is	${0}".format(e.get_balance()))
				else	:
								print("Withdrawal	successful.")
								
def	deposit(account,	amount)	:
				try	:
								account.deposit(amount)
				except	ValueError	as	e	:
								print("Invalid:",	e)
				else	:
								print("Deposit	successful.")

These	functions	both	use	a	try-except-else	construct.	In	these	constructs,	the	else	body
is	executed	if	there	were	no	exceptions	raised	in	the	try	body.

The	code	above	is	available	in	the	file	banking.py.	Below	is	an	example	interaction	with
this	savings	account:

>>>	savings	=	SavingsAccount("John	Cleese",	100,	0.3)
>>>	savings
SavingsAccount(John	Cleese,	100,	0.3)
>>>	withdraw(savings,	60)
Withdrawal	successful.
>>>	savings.get_balance()
40
>>>	savings.add_interest()
>>>	savings.get_balance()
40.12
>>>	deposit(savings,	-20)
Invalid:	Can't	deposit	a	negative	amount
>>>	withdraw(savings,	45)
Cannot	withdraw:	Not	enough	funds	in	account
Your	account	balance	is	$40.12

Inheritance	as	Abstraction
Following	from	the	previous	example,	we	write	a	class	that	represents	a	credit
account.

class	CreditAccount(object)	:
				"""A	simple	credit	account."""
				def	__init__(self,	owner,	initial_deposit,	monthly_interest,	limit)	:
								self._owner	=	owner
								self._balance	=	initial_deposit
								self._interest	=	monthly_interest
								self._limit	=	limit

				def	get_owner(self)	:
								return	self._owner

				def	get_balance(self)	:
								return	self._balance

				def	add_interest(self)	:
								"""Subtract	the	monthly	interest	from	the	balance."""
								if	self._balance	<	0	:
												interest	=	self._balance	*	self._interest	/	100.0
												self._balance	+=	interest

				def	deposit(self,	amount)	:
								"""Add	a	positive	amount	to	the	balance."""
								if	amount	<	0	:
												raise	ValueError("Can't	deposit	a	negative	amount")
								self._balance	+=	amount

				def	withdraw(self,	amount)	:
								"""Subtract	a	positive	amount	from	the	balance."""
								if	amount	<	0	:
												raise	ValueError("Can't	withdraw	a	negative	amount")
								new_balance	=	self._balance	-	amount

								if	new_balance	<	-self._limit	:
												raise	WithdrawalError("Credit	limit	reached",	self._balance)
								else	:
												self._balance	=	new_balance

				def	__repr__(self)	:
								repr_string	=	"CreditAccount({0},	{1},	{2},	{3})"
								return	repr_string.format(self._owner,
																																		self._balance,
																																		self._interest,
																																		self._limit)

Notice	that	the	class	definitions	of	SavingsAccount	and	CreditAccount	are	very	similar;	in
fact,	some	of	the	methods	are	identical.	This	is	to	be	expected	as	the	credit	and
savings	accounts	are	both	types	of	bank	account.	We	would	like	to	abstract	out	the
duplicated	methods,	and	create	an	“account”	class	which	represents	the	common
functionality	of	the	two	types	of	account.	Once	this	is	done,	the	SavingsAccount	and	
CreditAccount	classes	can	inherit	from	Account.

Between	the	two	classes,	we	see	that	the	get_owner,	get_balance	and	deposit	methods
are	identical,	so	these	methods	can	be	moved	to	the	Account	class.	The	__init__
method	also	contains	similar	behaviour,	so	it	can	easily	be	moved	to	Account.	The
other	three	methods	(add_interest,	withdraw	and	__repr__)	look	similar,	but	not	in	a	way
that	can	be	easily	abstracted,	so	we	will	leave	them	as	they	are.	The	file	banking2.py
contains	the	code	below.

class	Account(object)	:
				"""An	abstraction	of	different	bank	accounts."""
				def	__init__(self,	owner,	initial_deposit,	monthly_interest)	:
								self._owner	=	owner
								self._balance	=	initial_deposit
								self._interest	=	monthly_interest

				def	get_owner(self)	:
								return	self._owner

				def	get_balance(self)	:
								return	self._balance

				def	deposit(self,	amount)	:
								"""Add	a	positive	amount	to	the	balance."""
								if	amount	<	0	:
												raise	ValueError("Can't	deposit	a	negative	amount")
								self._balance	+=	amount

								
class	SavingsAccount(Account)	:
				"""A	simple	savings	account."""
				def	add_interest(self)	:
								"""Add	the	monthly	interest	to	the	balance."""
								if	self._balance	>	0	:
												interest	=	self._balance	*	self._interest	/	100.0
												self._balance	+=	interest

				def	withdraw(self,	amount)	:
								"""Subtract	a	positive	amount	from	the	balance."""
								if	amount	<	0	:
												raise	ValueError("Can't	withdraw	a	negative	amount")

								new_balance	=	self._balance	-	amount
								if	new_balance	<	0	:
												raise	WithdrawalError("Not	enough	funds	in	account",	self._balance)
								else	:

												self._balance	=	new_balance

				def	__repr__(self)	:
								repr_string	=	"SavingsAccount({0},	{1},	{2})"
								return	repr_string.format(self._owner,	self._balance,	self._interest)

class	CreditAccount(Account)	:
				"""A	simple	credit	account."""
				def	__init__(self,	owner,	initial_deposit,	monthly_interest,	limit)	:
								super().__init__(owner,	initial_deposit,	monthly_interest)
								self._limit	=	limit

				def	add_interest(self)	:
								"""Subtract	the	monthly	interest	from	the	balance."""
								if	self._balance	<	0	:
												interest	=	self._balance	*	self._interest	/	100.0
												self._balance	+=	interest

				def	withdraw(self,	amount)	:
								"""Subtract	a	positive	amount	from	the	balance."""
								if	amount	<	0	:
												raise	ValueError("Can't	withdraw	a	negative	amount")

								new_balance	=	self._balance	-	amount
								if	new_balance	<	-self._limit	:
												raise	WithdrawalError("Credit	limit	reached",	self._balance)
								else	:
												self._balance	=	new_balance

				def	__repr__(self)	:
								repr_string	=	"CreditAccount({0},	{1},	{2},	{3})"
								return	repr_string.format(self._owner,
																																		self._balance,
																																		self._interest,
																																		self._limit)

In	the	television	example	above,	we	used	inheritance	to	add	more	functionality	to	an
existing	type	of	television.	Here,	we	have	used	inheritance	to	abstract	functionality
from	two	similar	classes.	A	result	of	this	is	that	the	Account	class	is	not	a	fully
functional	bank	account;	it	does	not	have	the	ability	to	withdraw	funds	or	accumulate
interest.	Because	of	this,	we	call	the	Account	an	abstract	class.

Abstract	classes	should	not	be	instantiated	directly	(that	is,	we	should	not	create
instances	of	the	abstract	class	itself),	instead	we	create	subclasses	that	fill	in	the
missing	functionality.	We	have	already	seen	an	example	of	an	abstract	class,	Exception.
We	never	raise	an	Exception	itself,	but	we	use	various	subclasses	of	Exception	to
represent	different	things.	An	advantage	of	using	the	concept	of	an	abstract	Account
class	is	that	we	can	write	functions	that	work	with	any	type	of	account.	For	example,
the	withdraw	and	deposit	functions	we	wrote	above	can	also	work	with	CreditAccount
instances:

>>>	credit	=	CreditAccount("Michael	Palin",	0,	1.5,	200)
>>>	credit
CreditAccount(Michael	Palin,	0,	1.5,	200)
>>>	withdraw(credit,	150)
Withdrawal	successful.
>>>	credit.add_interest()
>>>	credit.get_balance()
-152.25
>>>	deposit(credit,	60)
Deposit	successful.

>>>	credit.get_balance()
-92.25
>>>	withdraw(credit,	110)
Cannot	withdraw:	Credit	limit	reached
Your	account	balance	is	$-92.25

Designing	an	Inheritance	Hierarchy
As	another	example	we	now	sketch	out	some	ideas	for	designing	a	simple	inheritance
hierarchy	for	people	at	a	university.

If	we	look	around	campus	we	will	see	lots	of	people	and	we	can	look	at	them	more
closely,	searching	for	similarities.	Some	of	these	people	sit	in	lectures	and	do	exams.
These	people	have	a	lot	in	common	and	so	we	might	define	a	class	to	describe	their
attributes	—	let’s	say	an	UndergraduateStudent	class.	What	do	members	of	this	class
have	in	common?	They	have	names,	addresses,	student	numbers,	student	records,
courses	they	are	enrolled	in.	If	we	look	around	we	will	find	some	other	kinds	of
students	that	have	slightly	different	attributes	—	let’s	put	them	in	a	PostgraduateStudent
class.	These	students	will	share	some	attributes	with	the	other	students	but	have
their	own	attributes	—	for	example,	thesis	topic	and	supervisor.	We	might	then	decide
that	both	kinds	of	students	have	a	lot	of	overlap	and	decide	that	they	both	inherit
from	Student.

There	are	other	people	walking	around	that	get	paid	—	some	of	these	teach	classes
and	do	research	—	let’s	put	them	in	an	Academic	class.	Members	of	this	class	will	have
attributes	like	staff	number,	pay	scale,	roles,	teaching	assignments	and	research
interests.	Others	might	belong	to	a	TechnicalStaff	class	and	others	might	belong	to	an	
Administration	class.	Together	we	might	group	these	together	and	form	the	Staff
superclass	and	then	together	with	students	create	the	Person	superclass.

Now	that	we	have	sketched	out	the	inheritance	hierarchy	we	then	want	to	determine
where	specific	attributes	should	live.	Let’s	start	with	name	and	address.	Everyone	has
these	attributes	and	so	belong	to	the	base	Person	class.	On	the	other	hand,	the
attribute	(method)	for	enrolling	in	a	course	is	specific	to	an	undergraduate	student
and	so	should	go	in	that	class.

What	we	have	done	is	a	bottom-up	design	of	the	class	hierarchy	—	we	started	at	the
bottom	and	worked	our	way	up	moving	from	subclass	to	superclass.	We	could	also	do
top-down	design	—	by	starting	with	the	base	class	(Person)	and	looking	for	differences
—	for	example	staff	get	paid	and	students	do	not.	This	gives	the	subclasses	of	Person.

