
Three	people	have	just	fallen	past	that	window

Graphical	User	Interfaces	–	Part	2
Structuring	GUI	Code
When	writing	GUI	code,	we	often	want	to	group	widgets.	This	typically	happens	when
we	want	these	widgets	to	appear	together	in	our	GUI	and/or	when	these	widgets,	as	a
group,	have	a	role	in	the	program.	We	can	think	of	this	as	creating	our	own	widget.
We	will	take	our	game	screen	example	from	the	previous	section	as	an	example.	The
four	directional	buttons	could	be	grouped	together	into	a	single	“controls”	widget
that	can	be	dealt	with	separately.	To	do	this,	we	will	write	a	class	that	inherits	from	
Frame	and	contains	our	directional	buttons.

import	tkinter	as	tk

class	Controls(tk.Frame):
				"""Widget	containing	four	directional	buttons."""

				BUTTON_WIDTH	=	10

				def	__init__(self,	parent):
								"""Set	up	the	four	directional	buttons	in	the	frame.

								Parameters:
												parent	(Tk):	Window	in	which	this	widget	is	to	be	placed.
								"""
								super().__init__(parent)

								upBtn	=	tk.Button(self,	text="UP",	width=self.BUTTON_WIDTH,
																										command=self.push_up)
								upBtn.pack(side=tk.TOP)
								leftBtn	=	tk.Button(self,	text="LEFT",	width=self.BUTTON_WIDTH,
																												command=self.push_left)
								leftBtn.pack(side=tk.LEFT)
								downBtn	=	tk.Button(self,	text="DOWN",	width=self.BUTTON_WIDTH,
																												command=self.push_down)
								downBtn.pack(side=tk.LEFT)
								rightBtn	=	tk.Button(self,	text="RIGHT",	width=self.BUTTON_WIDTH,
																													command=self.push_right)
								rightBtn.pack(side=tk.LEFT)

				def	push_up(self):
								print("UP")

				def	push_down(self):
								print("DOWN")

				def	push_left(self):
								print("LEFT")

				def	push_right(self):
								print("RIGHT")

class	GameApp(object):
				"""Basic	game	window	design."""

				def	__init__(self,	master):
								"""Initialise	the	game	window	layout
											with	four	directional	buttons	widget	and	a	screen.

								Parameters:
												master	(Tk):	Main	window	for	application.
								"""
								master.title("Buttons	are	good")
								controls	=	Controls(master)
								controls.pack(side=tk.LEFT)
								screen	=	tk.Label(master,	text="screen",	bg="light	blue",	
																										width=38,	height=16)
								screen.pack(side=tk.LEFT,	expand=True,	fill=tk.BOTH)

root	=	tk.Tk()
app	=	GameApp(root)
root.mainloop()

The	first	class	we	wrote	is	our	Controls	class,	to	represent	the	directional	buttons
widget.	This	class	inherits	from	Frame,	so	the	__init__	method	calls	Super().__init__
with	the	argument	parent.	Conventionally	parent	is	the	name	used	for	the	widget	that
will	contain	this	one,	i.e.	its	parent.	In	this	case,	the	Controls	widget	will	be	contained
inside	the	root	Tk	object.	We	might	consider	another	application	where	the	Controls
widget	is	packed	inside	a	different	container	widget,	such	as	another	Frame.

The	__init__	method	then	creates	our	four	buttons.	Again,	as	we	are	not	expecting	to
update	or	get	information	from	our	buttons	we	do	not	need	to	store	them	in	class
variables.	We	want	to	pack	the	buttons	into	the	Controls	instance	(recall	that	Controls
is	just	a	specialisation	of	a	Frame,	so	we	can	pack	widgets	into	it).	To	do	this,	we	set	the
parent	widget	of	the	buttons	as	self,	the	Controls	object.

The	Controls	class	contains	four	more	methods,	which	are	used	as	the	callbacks	for
the	buttons.	By	writing	these	methods	in	the	Controls	class,	we	make	it	clear	that	they
will	only	be	used	by	the	four	buttons	contained	in	this	widget.	It	also	gives	these
methods	access	to	any	information	in	the	Controls	object,	which	might	be	necessary	if
the	buttons	needed	to	do	more	complex	tasks.

In	the	GameApp	class	we	now	only	need	to	create	two	widgets,	our	Controls	widget	and
the	Label	widget.	(Where	we	are	using	the	Label	to	represent	the	game’s	screen.)

We	can	now	save	our	code	as	game_screen_classes.py	and	have	a	look.

Writing	the	code	this	way,	where	we	group	sets	of	related	widgets	into	classes,	makes
the	code	look	very	simple,	and	it	is.	It	is	easy	code	to	read,	debug	and	modify,	which
is	why	this	method	is	preferred.

As	well	as	Frame,	tkInter	includes	other	blank	container	widgets	to	arrange	widgets
inside.	The	Toplevel	widget	represents	a	new	blank	window.	This	can	be	useful	for
creating	dialog	boxes	within	an	application,	by	creating	a	class	which	inherits	from	
Toplevel.

The	Canvas
We	have	already	seen	the	Label,	Button	and	Entry	widgets	and	now	we	consider	the	
Canvas	widget.	The	Canvas	widget	represents	a	space	for	drawing	objects	on	the	screen,
such	as	lines,	ovals	and	polygons.	The	following	example	shows	the	use	of	some	of	the
drawing	methods	available.

import	tkinter	as	tk

class	CanvasApp(object):
				def	__init__(self,	master):
								master.title("Canvas")

								self._canvas	=	tk.Canvas(master,	bg="white",	width=500,	height=500)
								self._canvas.pack(side=tk.TOP,	expand=True,	fill=tk.BOTH)

								frame	=	tk.Frame(master)
								drawBtn	=	tk.Button(frame,	text="Draw",	command=self.draw)
								drawBtn.pack(side=tk.LEFT)
								dltBtn	=	tk.Button(frame,	text="Delete",	command=self.delete)
								dltBtn.pack(side=tk.LEFT)
								frame.pack(side=tk.TOP)

				def	draw(self):
								#	Example	1
								self._canvas.create_line([(0,	0),	(150,	50),	(200,	200)])

								#	Example	2
								self._canvas.create_polygon([(300,	50),	(330,	80),	(300,	140),	(270,	80)])

								#	Example	3
								self._canvas.create_oval(250,	200,	300,	300,	outline="red",	width=5)

								#	Example	4
								self._canvas.create_rectangle(350,	350,	431,	400,	fill="blue")

								#	Example	5
								centre	=	(100,	400)
								radius	=	50
								self._canvas.create_oval(centre[0]-radius,	centre[1]-radius,
																																	centre[0]+radius,	centre[1]+radius)
								self._canvas.create_rectangle(centre[0]-radius,	centre[1]-radius,
																																						centre[0]+radius,	centre[1]+radius)

				def	delete(self):
								self._canvas.delete(tk.ALL)

root	=	tk.Tk()
app	=	CanvasApp(root)
root.mainloop()

This	code	is	available	as	canvas.py.	When	we	run	the	script,	we	see	a	blank	white
screen	with	two	buttons.	When	we	click	on	the	“Draw”	button,	we	see	this	result:

First,	the	CanvasApp	creates	and	packs	a	Canvas	with	a	white	background,	and	a	width
and	height	of	500	pixels.	Each	of	the	drawing	methods	of	the	Canvas	use	a	coordinate
system	in	pixels,	where	(0,	0)	is	the	top-left,	the	positive	x	direction	is	to	the	right,
and	the	positive	y	direction	is	down	the	screen.	Note	that	this	is	different	from	the
standard	Cartesian	coordinate	system	where	the	positive	y	direction	is	up.	The
coordinates	of	the	bottom-right	corner	of	the	canvas	are	the	same	as	the	width	and
height	of	the	canvas.

Note,	we	did	not	create	a	separate	widget	for	the	two	control	buttons,	Draw	and	Delete.
As	there	are	only	two	buttons,	this	example	did	not	call	for	the	creation	of	a	new
widget.

The	first	object	drawn	on	the	canvas	is	a	line.	The	create_line	method	takes	a
sequence	of	x	and	y	coordinates,	and	draws	a	straight	line	between	each	pair	of
coordinates.	The	example	above	shows	a	line	drawn	from	(0,	0)	in	the	top-left	corner,
through	(150,	50),	ending	at	(200,	200).	create_line	can	also	be	used	to	draw	a	curve	or

freehand	line,	by	drawing	straight	lines	with	many	coordinates	placed	very	close
together.	This	does	not	make	an	exact	curve,	but	it	will	appear	very	close	to	a	curve
when	viewed	on	a	monitor.

The	second	object	drawn	here	is	a	polygon.	Similar	to	drawing	a	line,	it	takes	a
sequence	of	coordinates.	The	polygon	is	then	drawn	with	these	coordinates	as	the
vertices,	and	then	the	polygon	is	filled	in	(coloured	black	by	default).	This	example
shows	a	kite	shape,	drawn	in	the	order	of	the	coordinates	specified.	Note	that	unlike
the	create_line	method,	create_polygon	will	join	the	last	pair	of	coordinates	back	to	the
first	(which	is	necessary	to	draw	a	closed	polygon).

Example	3	above	draws	a	red	oval.	Here,	we	specify	four	coordinates,	representing
the	leftmost	x-coordinate,	the	uppermost	y-coordinate,	the	rightmost	x-coordinate,	and
the	lowermost	y-coordinate.	Another	way	to	visualise	the	drawing	of	the	oval	is	to
imagine	a	rectangle	drawn	around	it,	such	as	the	square	and	circle	arrangement	in
the	above	image.	When	drawing	the	oval,	we	specify	the	top-left	and	bottom-right
corners	of	the	surrounding	rectangle,	and	the	oval	is	drawn	inside.	Here,	we	also
make	use	of	two	optional	arguments,	outline	and	width.	Each	of	the	Canvas	“create”
methods	can	accept	optional	arguments	to	specify	other	details,	such	as	colour	and
line	width.	outline	and	width	are	used	to	specify	the	colour	and	width	of	the	oval’s
outline.

Example	4	draws	a	blue	rectangle.	To	do	this,	we	specify	the	coordinates	of	the	top-
left	and	bottom-right	corners	of	the	rectangle.	Here	we	have	also	used	another
optional	argument,	fill,	to	specify	the	internal	colour	of	the	rectangle.	By	default,
ovals	and	rectangles	are	transparent.	Notice	though	that	the	rectangle	still	has	a
black	border,	but	it	can	be	hard	to	spot,	because	it	is	only	one	pixel	wide.	To	set	the
entire	rectangle	to	the	same	colour,	we	would	either	set	the	outline	to	the	same
colour,	or	set	the	outline	width	to	0	to	remove	the	outline	entirely.

In	the	final	example,	we	draw	a	circle	by	specifying	a	centre	and	radius,	then	using
simple	arithmetic	to	create	an	oval	at	the	desired	coordinates.	We	also	draw	a	square
at	the	same	coordinates.	If	we	were	writing	an	application	that	involved	drawing	a	lot
of	circles,	we	might	consider	writing	a	method	that	takes	a	pair	of	coordinates	and	a
radius,	and	draws	a	circle	centred	at	those	coordinates.	This	would	make	the	drawing
part	of	the	application	much	easier	to	write.

The	Canvas	has	a	delete	method,	which	can	be	used	to	remove	drawings	from	the
screen.	Clicking	on	the	“Delete”	button	will	call	self._canvas.delete(tk.ALL),	which
deletes	all	the	drawings.	Clicking	on	“Draw”	will	bring	them	back.	Note	that	clicking
on	“Draw”	multiple	times	will	actually	draw	a	complete	set	of	new	objects	on	the
canvas	each	time,	but	because	they	all	overlap,	we	only	see	one	set	of	drawings.

Customising	Widgets
We	will	continue	with	the	game	example	and	replace	the	screen	label	with	a	Canvas.	In
doing	this,	we	will	need	to	think	about	the	logic	of	the	application.	What	will	be	the
initial	setup	of	the	screen	area?	What	information	about	the	game	will	need	to	be
stored	in	the	program?	How	will	user	interactions	change	the	internal	state,	and	how
do	we	show	this	change	in	the	screen?

In	this	simple	example,	the	game	involves	a	circle	shown	on	the	screen,	initially	in	the
centre.	Pressing	the	four	buttons	will	move	the	circle	around	the	screen,	drawing
lines	behind	it	to	form	a	path.	To	do	this,	the	application	will	need	to	keep	track	of
where	the	circle	is,	and	all	the	coordinates	of	where	it	has	been.	When	updating	a
figure	or	drawing	on	a	Canvas	widget,	it	can	often	be	easiest	to	clear	the	entire	canvas,
then	redraw	everything	from	scratch.

Now	that	we	have	investigated	the	functionality	required	for	the	canvas,	we	realise
that	each	of	the	buttons	needs	to	take	a	number	of	steps	to	complete	its	task.	Because
this	all	seems	to	be	the	work	of	the	Canvas,	we	will	customise	Canvas	to	have	extra

methods	and	attributes	to	fit	our	situation.	That	is,	we	will	write	a	subclass	of	Canvas
which	has	this	functionality.

class	Screen(tk.Canvas):
				"""A	customised	Canvas	that	can	move	a	circle	and	draw	a	path."""
				SIZE	=	230		#	The	size	of	the	screen.
				RADIUS	=	5		#	The	radius	of	the	circle
				MOVE	=	10			#	The	amount	to	move	on	each	step

				def	__init__(self,	parent):
								"""Create	and	initialise	a	screen.

								Parameters:
												parent	(Tk):	Window	in	which	this	screen	is	to	be	placed.
								"""
								super().__init__(parent,	bg="light	blue",	width=self.SIZE,
																									height=self.SIZE)

								#	Start	in	the	centre,	without	any	points	in	the	path.
								self._x,	self._y	=	(self.SIZE	/	2,	self.SIZE	/	2)
								self._path	=	[(self._x,	self._y)]
								self._redraw()

				def	_redraw(self):
								"""Redraw	the	game	screen	after	a	move."""
								self.delete(tk.ALL)
								coords	=	(self._x	-	self.RADIUS,
																		self._y	-	self.RADIUS,
																		self._x	+	self.RADIUS,
																		self._y	+	self.RADIUS)
								self.create_oval(coords,	fill="black",	width=0)
								if	len(self._path)	>	1:
												self.create_line(self._path)

				def	_move(self,	dx,	dy):
								"""Move	the	circle	by	a	given	amount.	

								Parameters:
												dx	(int):	Amount	to	move	in	the	x-coordinate.
												dy	(int):	Amount	to	move	in	the	y-coordinate.
								"""
								self._x	+=	dx
								self._y	+=	dy
								self._path.append((self._x,	self._y))
								self._redraw()

				def	move_up(self):
								"""Move	the	circle	up."""
								self._move(0,	-self.MOVE)

				def	move_down(self):
								"""Move	the	circle	down."""
								self._move(0,	self.MOVE)

				def	move_left(self):
								"""Move	the	circle	left."""
								self._move(-self.MOVE,	0)

				def	move_right(self):
								"""Move	the	circle	right."""
								self._move(self.MOVE,	0)

This	Screen	will	store	the	current	coordinates	of	the	circle,	and	a	list	of	coordinates	it

has	been	to.	The	private	method	_redraw	will	delete	and	redraw	the	circle	and	path	on
the	screen,	which	is	done	at	the	beginning	and	after	every	movement.	The	methods	
move_up,	move_down,	move_left	and	move_right	will	perform	the	actions	required	by	the	four
buttons.	Note	that,	as	Screen	inherits	from	Canvas,	it	can	make	method	calls	such	as	
self.delete(tk.ALL)	and	self.create_oval	to	draw	on	the	canvas.	We	can	now	modify	the	
Controls	and	GameApp	classes	to	use	a	Screen:

class	Controls(tk.Frame):
				"""Widget	containing	four	directional	buttons."""

				BUTTON_WIDTH	=	10

				def	__init__(self,	parent):
								"""Set	up	the	four	directional	buttons	in	the	frame.

								Parameters:
												parent	(Tk):	Window	in	which	this	widget	is	to	be	placed.
												screen	(Screen):	Screen	which	has	the	movement	methods.
								"""
								super().__init__(parent)

								upBtn	=	tk.Button(self,	text="UP",	width=self.BUTTON_WIDTH,
																										command=screen.move_up)
								upBtn.pack(side=tk.TOP)
								leftBtn	=	tk.Button(self,	text="LEFT",	width=self.BUTTON_WIDTH,
																												command=screen.move_left)
								leftBtn.pack(side=tk.LEFT)
								downBtn	=	tk.Button(self,	text="DOWN",	width=self.BUTTON_WIDTH,
																												command=screen.move_down)
								downBtn.pack(side=tk.LEFT)
								rightBtn	=	tk.Button(self,	text="RIGHT",	width=self.BUTTON_WIDTH,
																													command=screen.move_right)
								rightBtn.pack(side=tk.LEFT)

class	GameApp(object):
				"""Basic	game	window	design."""

				def	__init__(self,	master):
								"""Initialise	the	game	window	layout	with
											four	directional	buttons	and	a	screen.

								Parameters:
												master	(Tk):	Main	window	for	application.
								"""
								master.title("Game")
								screen	=	Screen(master)
								controls	=	Controls(master,	screen)
								controls.pack(side=tk.LEFT)
								screen.pack(side=tk.LEFT,	expand=True,	fill=tk.BOTH)

The	updated	Controls	class	now	also	requires	the	Screen	object,	and	it	uses	this	to
access	the	four	methods	needed	as	Button	callbacks.	The	GameApp	is	also	modified	to
create	a	Screen	instead	of	a	Label.	This	code	is	available	to	download	as	game_canvas.py.
When	we	interact	with	this	program,	we	see	this	result:

Aside:	Separating	the	Controls	and	Screen

The	constructor	of	the	Controls	class	above	requires	an	object	called	screen,	and
it	uses	this	to	access	move_up,	move_left,	move_down	and	move_right,	which	should	be
methods	that	perform	the	relevant	actions.	For	this	program,	there	is	no
problem,	but	what	if	we	wanted	to	modify	the	program?	There	are	several
potential	issues	to	watch	out	for.

If	we	modified	(or	replaced)	the	Screen	and	renamed	the	four	movement
methods,	we	would	need	to	modify	the	code	in	Controls.	Worse,	if	the	methods
were	moved	into	separate	classes,	or	made	into	top-level	functions,	we	could	no
longer	pass	in	a	single	object	to	Controls	which	can	access	all	the	methods.	This
is	still	not	a	major	issue	in	an	application	this	small,	but	in	a	larger	application,
many	other	classes	could	be	dependent	on	the	Screen,	which	would	cause
problems	when	we	tried	to	change	the	Screen.	We	could	also	imagine	a	situation
where	multiple	Controls	widgets	were	needed,	each	requiring	different	method
names.

To	fix	these	issues,	we	can	modify	the	Controls	class	to	require	the	four	callback
functions	directly;	then	the	internals	of	Controls	would	still	work,	even	if	the
methods	were	renamed	or	moved.	We	then	have	this	result:

class	Controls(tk.Frame):
				BUTTON_WIDTH	=	10
				def	__init__(self,	parent,	up,	down,	left	right):
								super().__init__(parent)
								upBtn	=	tk.Button(self,	text="UP",	width=self.BUTTON_WIDTH,
																										command=up)
								upBtn.pack(side=tk.TOP)
								leftBtn	=	tk.Button(self,	text="LEFT",	width=self.BUTTON_WIDTH,
																												command=left)
								leftBtn.pack(side=tk.LEFT)
								downBtn	=	tk.Button(self,	text="DOWN",	width=self.BUTTON_WIDTH,
																												command=down)
								downBtn.pack(side=tk.LEFT)
								rightBtn	=	Button(self,	text="RIGHT",	width=self.BUTTON_WIDTH,
																										command=right)
								rightBtn.pack(side=tk.LEFT)

class	GameApp(object):
				def	__init__(self,	master):
								master.title("Game")
								screen	=	Screen(master)
								controls	=	Controls(master,	screen.move_up,	screen.move_down,
																																				screen.move_left,	screen.move_right)
								controls.pack(side=tk.LEFT)
								screen.pack(side=tk.LEFT,	expand=True,	fill=tk.BOTH)

The	GameApp	is	also	modified	to	access	the	respective	methods	of	Screen.	In	a
sense,	we	have	now	completely	separated	the	Controls	and	Screen	classes,	and
the	interaction	between	them	is	defined	entirely	by	the	GameApp	class.	In	a	larger
application,	moving	all	of	this	control	to	the	one	class	will	make	it	much	easier
to	treat	all	the	other	classes	as	distinct	from	each	other.

The	implementation	for	this	code	is	provided	in	game_canvas_sep_controls.py.

Events
The	program	we	wrote	above	feels	difficult	to	use.	In	particular,	the	use	of	the	four

buttons	is	unintuitive.	We	would	like	the	user	to	interact	directly	with	the	canvas
using	mouse	gestures.	tkInter	provides	a	means	of	doing	this	using	events.	An	event
is	a	trigger	which	occurs	when	the	user	makes	an	action	with	the	mouse	or	keyboard.
For	example,	when	the	user	makes	a	left	click,	tkInter	will	trigger	a	<Button-1>	event,
and	when	the	user	drags	the	mouse	with	a	left	click,	tkInter	will	trigger	a	<B1-Motion>
event.	To	use	these	types	of	event,	we	must	bind	the	event	to	a	callback	function,
similar	to	a	callback	function	for	a	Button.	Widgets	have	a	method	bind	which	takes	an
event	name	(as	a	string)	and	a	callback	function.	The	function	must	take	one
argument,	typically	called	event,	which	contains	information	on	the	trigger	that
occurred.	For	example,	if	the	mouse	was	clicked	or	moved,	the	event	would	contain
the	coordinates	of	the	cursor.

As	an	example,	we	will	modify	the	game	screen	example	so	that	clicking	and	dragging
will	move	the	circle.	We	should	again	consider	the	application	logic:	what	should
happen	when	the	mouse	is	pressed	or	released?	What	should	happen	when	the
pressed	mouse	is	dragged	slightly?	If	the	mouse	is	pressed,	we	should	look	to	see	if
we	have	clicked	on	the	circle,	and	if	so	mark	it	as	being	“selected”.	When	the	mouse
is	dragged,	we	should	see	if	the	circle	has	been	selected,	and	if	so	move	it
accordingly.	When	the	mouse	is	released,	then	we	mark	the	circle	as	“deselected”.

import	tkinter	as	tk
import	math

class	Screen(tk.Canvas):
				""Customised	Canvas	that	can	move	a	circle	and	draw	a	path."""
				SIZE	=	230			#	The	size	of	the	screen.
				RADIUS	=	5			#	The	radius	of	the	circle

				def	__init__(self,	parent):
								"""Create	and	initialise	a	screen.

								Parameters:
												parent	(Tk):	Window	in	which	this	screen	is	to	be	placed.
								"""
								super().__init__(parent,	bg="light	blue",	width=self.SIZE,
																									height=self.SIZE)

								#	Start	in	the	centre,	without	any	points	in	the	path.
								self._x,	self._y	=	(self.SIZE	/	2,	self.SIZE	/	2)
								self._path	=	[(self._x,	self._y)]

								self._circle_select	=	False			#	Is	the	circle	selected.
								self.bind("<Button-1>",	self._click_event)
								self.bind("<B1-Motion>",	self._move_event)

								self._redraw()

				def	_redraw(self):
								"""Redraw	the	game	screen	after	a	move."""
								self.delete(tk.ALL)
								coords	=	(self._x	-	self.RADIUS,
																		self._y	-	self.RADIUS,
																		self._x	+	self.RADIUS,
																		self._y	+	self.RADIUS)
								self.create_oval(coords,	fill="black",	width=0)
								if	len(self._path)	>	1:
												self.create_line(self._path)

				def	_move(self,	dx,	dy):
								"""Move	the	circle	by	a	given	amount.	

								Parameters:
												dx	(int):	Amount	to	move	in	the	x-coordinate.

												dy	(int):	Amount	to	move	in	the	y-coordinate.
								"""
								self._x	+=	dx
								self._y	+=	dy
								self._path.append((self._x,	self._y))
								self._redraw()

				def	_click_event(self,	event):
								"""Sets	whether	the	circle	is	selected.
								
								Parameters:
												event	(tk.Event):	Selection	event	with	mouse	coordinates.								
								"""
								dist_to_circle	=	math.hypot(event.x	-	self._x,	event.y	-	self._y)
								self._circle_select	=	(dist_to_circle	<	self.RADIUS)

				def	_move_event(self,	event):
								"""Calculates	the	distance	to	move	the	circle	so	that	it	moves	
											With	the	mouse.
								
								Parameters:
												event	(tk.Event):	Drag	event	with	the	new	mouse	coordinates.
								"""
								if	self._circle_select:
												dx	=	event.x	-	self._x
												dy	=	event.y	-	self._y
												self._move(dx,	dy)

class	GameApp(object):
				"""Basic	game	to	move	a	circle	around	a	screen	with	the	mouse."""
				def	__init__(self,	master):
								"""Initialise	the	game	screen.

								Parameters:
												master	(Tk):	Main	window	for	application.
								"""
								screen	=	Screen(master)
								screen.pack(side=tk.LEFT,	expand=True,	fill=tk.BOTH)

root	=	tk.Tk()
app	=	GameApp(root)
root.mainloop()

We	have	removed	the	buttons	as	they	are	no	longer	needed,	we	will	now	have	full
control	over	the	circle	with	the	mouse.	The	first	big	change	to	notice	is	the	addition	of
three	new	lines	in	the	Screen.__init__	method.	The	first	line	is	simply	a	boolean	value
to	tell	if	the	circle	is	selected.	The	next	two	lines	are	calling	the	bind	method.	bind
takes	a	string	as	the	first	argument	for	what	type	of	event	we	are	interested	in.	The
second	argument	is	the	method	to	call	when	that	event	occurs.	The	two	events	we	are
interested	in	is	Button-1	(If	the	left	mouse	button	is	clicked)	and	B1-Motion	(If	the	mouse
is	moved	while	the	left	mouse	button	is	held	down).

Next,	we	have	removed	the	four	move	methods	of	Screen	and	replaced	them	with	two
new	methods.	These	methods	are	the	methods	called	by	our	two	bound	events.	Notice
how	each	takes	an	argument	event.	This	argument	is	the	event.	It	is	a	class	of	Python
and	contains	information	about	the	event	that	occurred.	We	can	use	event	to	access
the	x,	y	location	of	the	mouse	when	the	event	occurred	by	accessing	the	class
variable.	The	_click_event	method	sets	self._circle_select	to	a	boolean	value
representing	whether	or	not	the	mouse	is	inside	the	circle.	The	_move_event	method
calculates	the	distance	between	where	the	circle	is	and	where	the	mouse	is	so	that	we
can	move	the	circle	to	the	mouse’s	location.

We	can	now	save	our	code	as	game.py	and	have	a	look	at	our	new	game.

We	can	now	move	the	circle	any	way	that	we	wish	at	any	time	just	by	simply	moving
the	mouse.

More	About	Events

Here	is	a	table	of	some	of	the	events	that	can	be	used.	(Sourced	from
http://www.python-course.eu/tkinter_events_binds.php)

Events Description

<Button-1>

A	mouse	button	is	pressed	over	the	widget.	Button	1	is	the	leftmost
button,	button	2	is	the	middle	button	(where	available),	and	button
3	the	rightmost	button.	When	a	mouse	button	is	pressed	down	over
a	widget,	Tkinter	will	automatically	“grab”	the	mouse	pointer,	and
mouse	events	will	then	be	sent	to	the	current	widget	as	long	as	the
mouse	button	is	held	down.	The	current	position	of	the	mouse
pointer	(relative	to	the	widget)	is	provided	in	the	x	and	y	members
of	the	event	object	passed	to	the	callback.

<B1-Motion>

The	mouse	is	moved,	with	mouse	button	1	being	held	down	(use	B2
for	the	middle	button,	B3	for	the	right	button).	The	current	position
of	the	mouse	pointer	is	provided	in	the	x	and	y	members	of	the
event	object	passed	to	the	callback.

<Return>

The	user	pressed	the	Enter	key.	Virtually	all	keys	on	the	keyboard
can	be	bound	to.	For	an	ordinary	102-key	PC-style	keyboard,	the
special	keys	are	Cancel	(the	Break	key),	BackSpace,	Tab,
Return(the	Enter	key),	Shift_L	(any	Shift	key),	Control_L	(any
Control	key),	Alt_L	(any	Alt	key),	Pause,	Caps_Lock,	Escape,
Prior	(Page	Up),	Next	(Page	Down),	End,	Home,	Left,	Up,	Right,
Down,	Print,	Insert,	Delete,	F1,	F2,	F3,	F4,	F5,	F6,	F7,	F8,	F9,
F10,	F11,	F12,	Num_Lock,	and	Scroll_Lock.

<Key>
The	user	pressed	any	key.	The	key	is	provided	in	the	char	member	of
the	event	object	passed	to	the	callback	(this	is	an	empty	string	for
special	keys).

a
The	user	typed	an	“a”.	Most	printable	characters	can	be	used	as	is.
The	exceptions	are	space	(<space>)	and	less	than	(<less>).	Note	that	1
is	a	keyboard	binding,	while	<1>	is	a	button	binding.

<Configure>
The	widget	changed	size	(or	location,	on	some	platforms).	The	new
size	is	provided	in	the	width	and	height	attributes	of	the	event	object
passed	to	the	callback.

Some	of	the	attributes	of	the	event	class

|	Attribute	|	Description	|	|	——————	|	————————————————————
|	|	x,	y	|	The	current	mouse	position,	in	pixels.	|	|	x_root,	y_root	|	The	current
mouse	position	relative	to	the	upper	left	corner	of	the	screen,	in	pixels.	|	|	char	|
The	character	code	(keyboard	events	only),	as	a	string.	|	|	width,	height	|	The
new	size	of	the	widget,	in	pixels	(Configure	events	only).	|	|	type	|	The	event
type.	|

More	tkInter
In	this	example,	we	will	create	a	simple	text	editor	application.	This	text	editor	will	be

http://www.python-course.eu/tkinter_events_binds.php

able	to	open,	edit,	save	and	close	files.	We	will	also	keep	track	of	whether	the	text	file
has	been	edited	without	saving,	and	prompt	the	user	to	save	before	exiting.

We	will	introduce	a	new	widget,	Text,	to	represent	the	text	editing	area.	This	widget
has	three	methods	which	will	be	useful	in	this	application:	text.get(1.0,	tk.END)	will
retrieve	the	text	which	has	been	entered	into	the	widget,	text.delete(1.0,	tk.END)	will
remove	all	the	text	from	the	widget,	and	text.insert(tk.END,	string)	will	insert	a	string
of	text	into	the	widget.	There	are	many	other	types	of	widgets	not	described	here,	to
represent	other	GUI	elements,	such	as	lists	of	elements,	scroll	bars,	check	boxes,	and
radio	buttons.	Each	has	its	own	set	of	methods	which	are	useful	in	manipulating	the
information	that	type	of	widget	stores.

To	open	and	save	files,	we	will	use	the	tkInter	filedialog	module.	This	module	is
imported	using	the	other	type	of	import	that	is	performed	as	follows:	from	module	import	
submodule_or_class	This	comes	with	two	methods,	askopenfilename	for	choosing	a	file	to
open,	and	asksaveasfilename	for	choosing	a	file	to	save	to.	These	functions	will	open	a
dialog	box	prompting	the	user	to	choose	a	file,	and	then	return	the	file	name.	The
appearance	of	the	dialog	boxes	is	determined	by	the	operating	system	(that	is,	it	is	a
native	dialog	box),	so	the	user	will	already	be	familiar	with	using	the	dialog	without
requiring	effort	from	the	programmer.

We	will	also	need	to	display	short	dialog	message	boxes.	When	the	user	tries	to
abandon	a	file	without	saving	changes,	we	will	prompt	them	to	save.	We	will	add	this
functionality	to	an	“Exit”	menu	item,	as	well	as	when	the	user	closes	the	window
using	the	“X”	button	on	the	top	of	the	window.	We	will	also	create	a	simple	“About”
dialog	box,	giving	information	about	the	text	editor	when	the	user	asks	for	it.	These
dialog	boxes	will	be	modal;	this	means	that	the	user	will	not	be	able	to	continue
using	the	application	until	they	respond	to	the	dialog.	We	will	use	tkInter’s	messagebox
module.	This	comes	with	several	functions	for	showing	different	types	of	dialog	such
as	errors,	warnings,	“Yes/No”	or	“Retry/Cancel”	questions.	They	can	be	customised	to
show	different	titles,	messages,	icons	and	buttons,	and	will	return	a	value	based	on
the	user’s	button	choice.

We	will	also	introduce	the	Menu	widget,	for	adding	the	native	menus	on	the	top	of	the
window.	To	make	a	set	of	menus,	we	create	a	Menu	object	to	represent	the	menu	bar.
We	then	add	more	Menu	objects	to	represent	each	of	the	drop-down	menus.	To	add
individual	menu	items,	we	give	them	a	label	and	assign	a	callback	command,	just	as	we
create	callbacks	for	buttons.

We	will	now	write	the	text	editor	application.	As	well	as	constructing	the	GUI,	we	will
need	to	store	the	filename	of	the	document	being	edited.	We	will	also	store	a	boolean
flag	indicating	whether	or	not	the	file	has	been	edited	without	saving.	When	we
attempt	to	close	the	file	or	open	a	new	one,	we	will	check	to	see	if	the	user	wishes	to
save	their	work.

import	tkinter	as	tk
from	tkinter	import	filedialog
from	tkinter	import	messagebox

class	TextEditor(object)	:
				"""Simple	text	editing	application."""

				def	__init__(self,	master)	:
								"""	Create	the	screen	for	the	text	editor

								Parameters:
												master	(Tk):	Window	in	which	this	application	is	to	be	displayed.									
								"""
								self._master	=	master
								master.title("Text	Editor")

								self._filename	=	''
								self._is_edited	=	False

								self._text	=	tk.Text(master)
								self._text.pack(side=tk.TOP,	expand=True,	fill=tk.BOTH)
								self._text.bind("<Key>",	self._set_edited)

								#	Create	the	menu.
								menubar	=	tk.Menu(master)
								master.config(menu=menubar)

								filemenu	=	tk.Menu(menubar)
								menubar.add_cascade(label="File",	menu=filemenu)
								filemenu.add_command(label="New",	command=self.new)
								filemenu.add_command(label="Open",	command=self.open_file)
								filemenu.add_command(label="Save",	command=self.save)
								filemenu.add_command(label="Save	As...",	command=self.save_as)
								filemenu.add_command(label="Exit",	command=self.close)

								helpmenu	=	tk.Menu(menubar)
								menubar.add_cascade(label="Help",	menu=helpmenu)
								helpmenu.add_command(label="About",	command=self.about)

								master.protocol("WM_DELETE_WINDOW",	self.close)

				def	new(self)	:
								"""Create	a	new	text	file."""
								if	self._can_close()	:
												#	Forget	about	the	currently	open	file.
												self._text.delete(1.0,	tk.END)
												self._filename	=	''
												self._master.title("Text	Editor")
												self._is_edited	=	False

				def	open_file(self)	:
								"""Open	a	text	file."""
								if	not	self._can_close()	:
												return

								self._filename	=	filedialog.askopenfilename()
								if	self._filename	:
												f	=	open(self._filename,	"r")
												text	=	f.read()
												f.close()

												self._text.delete(1.0,	tk.END)
												self._text.insert(tk.END,	text)
												self._master.title("Text	Editor:	{0}".format(self._filename))
												self._is_edited	=	False

				def	save(self)	:
								"""	Save	the	contents	of	the	text	in	memory	to	the	file."""
								if	not	self._filename	:
												self._filename	=	filedialog.asksaveasfilename()
								self._perform_save()

				def	save_as(self)	:
								"""	Allow	saving	the	contents	of	the	text	in	memory	to	a	new	file."""
								filename	=	filedialog.asksaveasfilename()
								if	filename	:
												self._filename	=	filename
								self._perform_save()

				def	close(self)	:
								"""Exit	the	text	editor	application."""
								if	self._can_close()	:
												self._master.destroy()

				def	about(self)	:
								"""Generate	an	'About'	dialog."""
								messagebox.showinfo(title="Text	Editor",	message="A	simple	text	editor")

				def	_set_edited(self,	event)	:
								"""Record	that	the	text	file	has	been	edited.
								
								Parameters:
												event	(Tk.Event):	Record	that	text	has	been	edited	if	any	event
																														occurs	in	the	text.
								"""
								self._is_edited	=	True

				def	_perform_save(self)		:
								"""Store	the	contents	in	memory	into	a	file."""
								if	self._filename:
												self._master.title("Text	Editor:	{0}".format(self._filename))
												f	=	open(self._filename,	"w")
												text	=	self._text.get(1.0,	tk.END)[:-1]
												f.write(text)
												f.close()
												self._is_edited	=	False

				def	_can_close(self)	:
								"""	Ask	the	user	if	they	want	to	save	the	changed	text	to	a	file.			
								Returns:
												(bool)	True	if	it	is	safe	to	close	the	file;
																			False	if	the	user	wants	to	continue	editing.
								"""
								can_close	=	True
								if	self._is_edited	:
												reply	=	messagebox.askquestion(type=messagebox.YESNOCANCEL,
																								title="File	not	saved!",
																								message="Would	you	like	to	save	this	file?")
												if	reply	==	messagebox.YES	:
																self.save()			#	can_close	is	already	True.
												#	elif	reply	==	messagebox.NO	:
																#	can_close	is	already	True.
												elif	reply	==	messagebox.CANCEL	:
																can_close	=	False
								#	else	file	is	not	edited,	so	can	close.
								return	can_close

if	__name__	==	"__main__"	:
				root	=	tk.Tk()
				TextEditor(root)
				root.mainloop()

First,	we	will	look	at	the	__init__	method.	We	create	and	pack	a	Text,	and	bind	the	"
<Key>"	event	to	a	method	which	will	set	the	_is_edited	flag	to	True	whenever	a	key	is
pressed.	The	statement	menubar	=	tk.Menu(master)	will	create	a	menu	bar	for	the	master
window,	and	in	the	line	below,	we	configure	the	master	to	display	this	menu	bar.	To
create	menus,	tk.Menu(menubar)	will	create	an	empty	menu	list,	and	menubar.add_cascade
will	insert	it	onto	the	menu	bar	with	the	given	text	label.	To	add	a	menu	item,	we	use

the	method	add_command,	and	pass	in	a	text	label	to	display,	and	a	callback	function,	just
as	with	Button	objects.	If,	for	example,	we	wanted	to	create	a	sub-menu	to	the	“File”
menu,	we	would	create	tk.Menu(filemenu)	and	call	filemenu.add_cascade;	menu	items	and
further	sub-menus	can	then	be	added	into	this	menu.	The	statement	
master.protocol("WM_DELETE_WINDOW",	self.close)	is	similar	to	a	binding;	it	allows	us	to	set
an	action	to	perform	when	a	particular	event	occurs.	In	this	case,	"WM_DELETE_WINDOW"	is
the	event	represented	by	closing	the	window	(using	the	“X”	icon),	and	we	set	the	
self.close	method	as	a	callback.	Note	that	the	same	callback	is	also	assigned	to	the
“File	->	Exit”	menu	item,	so	either	of	these	actions	will	do	the	same	thing.

In	the	new,	open	and	close	methods,	we	need	to	check	if	the	user	has	edited	the	file	and
wishes	to	save.	To	do	this,	we	use	the	_can_close	helper	method	to	ask	this	question,
save	if	necessary,	and	return	False	if	the	user	wishes	to	continue	editing	the	file.	Since
the	save	and	save_as	functionality	is	similar	(they	both	save	the	text	to	a	file),	we
abstract	this	to	the	_perform_save	method.

This	program	is	available	to	download	as	text_editor.py.	When	we	run	the	application,
we	now	see	this:

