
CSSE1001/7030	Notes
What’s	all	this	then,	Amen!

–	Monty	Python

Introduction	to	Software	Engineering	and
Programming
What	is	Software	Engineering?

Software	Engineering	is	the	application	of	a	systematic,	disciplined,	quantifiable
approach	to	the	development,	operation,	and	maintenance	of	software	(IEEE	std
610.12-1990).	A	software	engineer	must	have	a	good	understanding	of	tools	and
techniques	for	requirements	gathering,	specification,	design,	implementation,	testing
and	maintenance.

These	days,	software	systems	are	often	very	large	and	many	contain	key	safety	or
mission-critical	components.	The	complexity	of	modern	software	systems	require	the
application	of	good	software	engineering	principles.	Indeed,	many	agencies	mandate
the	use	of	particular	tools	and	techniques	to	achieve	very	high	quality	and	reliable
software.

This	course	introduces	some	of	the	key	principles	of	software	engineering	and	gives
you	the	chance	to	put	them	into	practice	by	using	the	programming	language	Python.
While	you’ll	learn	lots	of	Python	in	this	course,	it	is	equally	important	that	you	learn
some	common	programming	principles	and	techniques	so	that	learning	the	next
language	is	not	as	daunting.

What	is	Python?

Python	is	a	powerful,	yet	simple	to	use	high-level	programming	language.	Python	was
designed	and	written	by	Guido	van	Rossum	and	named	in	honour	of	Monty	Python’s
Flying	Circus.	The	idea	being	that	programming	in	Python	should	be	fun!	The	quotes
in	these	notes	all	come	from	Monty	Python	and	it	has	become	somewhat	of	a	tradition
to	reference	Monty	Python	when	writing	Python	tutorials.

What	is	Software?

Software	(a	computer	program)	is	a	set	of	instructions	that	tell	the	computer
(hardware)	what	to	do.	All	computer	programs	are	written	in	some	kind	of
programming	language,	which	allows	us	to	precisely	tell	the	computer	what	we
want	to	do	with	it.

Features	of	a	Programming	Language

There	are	many	programming	languages	but	they	all	have	some	things	in	common.

Syntax	and	Semantics

Firstly,	each	program	language	has	a	well	defined	syntax.	The	syntax	of	a	language
describes	the	well-formed	‘sentences’	of	the	language.	Syntax	tells	us	how	to	write
the	instructions:	what	is	the	order	of	the	words,	how	our	program	must	be	structured,
etc.	It’s	a	bit	like	grammar	and	sentence	rules	when	we	write	in	English.

When	we	write	a	sentence	in	English,	we	may	mess	up	the	grammar	and	still	be
understood	by	the	reader	(or,	the	reader	may	ask	us	what	we	mean).	On	the	other
hand,	if	we	mess	up	the	syntax	when	we	write	a	computer	program,	the	computer	is
not	as	forgiving	-	it	will	usually	respond	by	throwing	up	an	error	message	and	exit.	So
it	is	fundamentally	important	that	we	understand	the	syntax	of	a	programming
language.

Secondly,	each	self-contained	piece	of	valid	syntax	has	well	defined	semantics
(meaning).	For	programming	languages,	it	is	vitally	important	that	there	are	no
ambiguities	-	i.e.	a	valid	piece	of	syntax	has	only	one	meaning.

High-	and	Low-	Level	Languages

Programming	languages	are	typically	divided	into	high-level	and	low-level
languages.

Low-level	languages	(like	assembler)	are	‘close’	to	the	hardware	in	the	sense	that
little	translation	is	required	to	execute	programs	on	the	hardware.	Programs	written
in	such	languages	are	very	verbose;	making	it	difficult	for	humans	to	write	and
equally	importantly,	difficult	to	read	and	understand!

On	the	other	hand,	high-level	languages	are	much	more	human-friendly.	The	code	is
more	compact	and	easier	to	understand.	The	downside	is	that	more	translation	is
required	in	order	to	execute	the	program.

Compiled	and	Interpreted	Languages

Before	we	can	run	our	program,	we	need	to	type	out	the	list	of	instructions	(called	our
source	code	or	just	code)	that	outlines	what	our	program	does	when	we	want	to	run
it	later.	So	how	does	our	source	code	then	turn	into	a	running	program?	This	depends
on	whether	the	programming	language	we	have	written	the	source	code	in	is	either	a
Compiled	or	Interpreted	language.

Compiled	languages	come	with	a	special	program	called	a	compiler	which	takes
source	code	written	by	a	user	and	translates	it	into	object	code.	Object	code	is	a
sequence	of	very	low-level	instructions	that	are	executed	when	the	program	runs.
Once	a	user’s	program	has	been	compiled,	it	can	be	run	repeatedly,	simply	by
executing	the	object	code.	Examples	of	compiled	languages	include	Java,	Visual	Basic
and	C.

Interpreted	languages	come	with	a	special	program	called	an	interpreter	which
takes	source	code	written	by	the	user,	determines	the	semantics	of	the	source	code
(interprets	it)	and	executes	the	semantics.	This	is	typically	done	in	a	step-by-step
fashion,	repeatedly	taking	the	next	semantic	unit	and	executing	it.	Examples	of
interpreted	languages	include	Python,	Ruby	and	Lisp.

Both	compilers	and	interpreters	need	to	understand	the	semantics	of	the	language	-
the	compiler	uses	the	semantics	for	the	translation	to	object	code;	the	interpreter
uses	the	semantics	for	direct	execution.	Consequently,	a	program	in	a	compiled
language	executes	faster	than	the	equivalent	program	in	an	interpreted	language	but
has	the	overhead	of	the	compilation	phase	(i.e.	we	need	to	compile	our	program	first
before	we	can	run	it,	which	can	take	a	while	if	the	program	is	very	big).	If	we	make	a
change	in	our	code	with	a	compiled	language,	we	need	to	recompile	the	entire
program	before	we	can	test	out	our	new	changes.

One	advantage	for	an	interpreted	language	is	the	relatively	quick	turn-around	time
for	program	development.	Individual	components	of	a	large	program	can	be	written,
tested	and	debugged	without	the	overhead	of	compiling	a	complete	program.
Interpreters	also	encourage	experimentation,	particularly	when	starting	out	-	just
enter	an	expression	into	the	interpreter	and	see	what	happens.

Python	is	an	interpreted	language	-	it	has	an	interpreter.	The	python	interpreter	is	a
typical	read-eval-print	loop	interpreter.	In	other	words,	it	repeatedly	reads
expressions	input	by	the	user,	evaluates	the	expressions	and	prints	out	the	result.

Data	Types

Another	important	issue	when	considering	programming	languages	is	the	way	the
language	deals	with	types.	Types	are	used	by	programming	languages	(and	users)	to
distinguish	between	“apples	and	oranges”.	At	the	lowest	level	all	data	stored	in	the
computer	are	simply	sequences	of	1’s	and	0’s.	What	is	the	meaning	of	a	given
sequence	of	1’s	and	0’s?	Does	it	represent	an	“apple”	or	an	“orange”?	In	order	to
determine	the	intended	meaning	of	such	a	sequence,	it	has	a	type	associated	it.	The
type	is	used	to	determine	the	meaning	of	the	1’s	and	0’s	and	to	determine	what
operations	are	valid	for	that	data.	Programming	languages	come	with	built-in	types
such	as	integers	(whole	numbers)	and	strings	(sequences	of	characters).	They	also
allow	users	to	define	their	own	types.

Programming	languages	implement	type	checking	in	order	to	ensure	the	consistency
of	types	in	our	code.	This	stops	us	from	doing	silly	things	like	trying	to	add	a	number
to	a	word,	or	trying	to	store	an	“apple”	in	a	memory	location	which	should	only
contain	an	“orange”.

Programming	languages	are	typically	either	statically	typed	or	dynamically	typed
languages.	When	using	a	statically	typed	language,	checks	for	the	consistency	of
types	are	done	‘up-front’,	typically	by	the	compiler	and	any	inconsistencies	are
reported	to	the	user	as	type	errors	at	compile	time	(i.e.	while	the	compiler	is
compiling	the	program).	When	using	a	dynamically	typed	language,	checks	for	type
errors	are	carried	out	at	run	time	(i.e.	while	the	user	is	running	the	program).

There	is	a	connection	between	whether	the	language	is	compiled	or	interpreted	and
whether	the	language	is	statically	or	dynamically	typed;	many	statically	typed
languages	are	compiled,	and	many	dynamically	typed	languages	are	interpreted.
Statically	typed	languages	are	usually	preferred	for	large-scale	development	because
there	is	better	control	over	one	source	of	‘bugs’:	type	errors.	(But	remember,	just
because	the	program	has	no	type	errors	doesn’t	make	it	correct!	This	is	just	one	kind
of	bug	that	our	program	must	not	have	to	run	properly.)	On	the	other	hand,
dynamically	typed	languages	tend	to	provide	a	gentler	introduction	to	types	and
programs	tend	to	be	simpler.	Python	is	dynamically	typed.

Notes	Formatting

In	the	remainder	of	the	notes	we	will	use	different	boxes	to	indicate	different	parts	of
the	content.	These	may	appear	in	the	readings	or	separately	on	Blackboard.	Below
are	examples.

Information

Detailed	information	will	appear	in	boxes	similar	to	this	one,	such	as	the	syntax
and	semantics	of	Python	code	presented	in	the	notes,	and	summaries	of	the
content.	Understanding	the	concepts	presented	here	will	assist	you	in	writing
programs.

Aside

Further	information	will	appear	in	these	boxes.	These	asides	go	beyond	the
course	content,	but	you	may	find	them	interesting.	You	can	safely	ignore	them,
but	they	will	often	demonstrate	several	powerful	features	of	Python,	and	they
may	be	a	useful	challenge	for	some	students.

Extra	examples

In	the	remainder	of	the	notes	we	sometimes	give	more	detailed	examples.
These	extra	examples	are	delimited	from	the	main	text	by	these	boxes.	You	may
find	them	useful.

Visualizations

These	boxes	contain	visualizations	of	Python	code.	You	might	find	that	these
visualizations	aid	in	your	understanding	of	how	Python	works.	You	can	visualize
your	own	code	by	going	to	the	Python	Tutor	Visualisation	Tool	at
http://pythontutor.com/visualize.html.	The	home	page	for	Python	Tutor	is	at
http://www.pythontutor.com/.

Our	galaxy	itself	contains	a	hundred	million	stars;

It’s	a	hundred	thousand	light-years	side	to	side;

It	bulges	in	the	middle	sixteen	thousand	light-years	thick,

But	out	by	us	it’s	just	three	thousand	light-years	wide.

Arithmetic,	Basic	Types	and	Variables
Python	Arithmetic	and	Integers

Python	understands	arithmetical	expressions	and	so	the	interpreter	can	be	used	as	a
calculator.	For	example:

>>>	2	+	3	*	4
14
>>>	(2	+	3)	*	4
20
>>>	10	-	4	-	3
3
>>>	10	-	(4	-	3)
9
>>>	-3	*	4
-12
>>>	2	**	3
8
>>>	2	*	3	**	2
18
>>>	(2	*	3)	**	2
36
>>>	7	//	3

http://pythontutor.com/visualize.html
http://www.pythontutor.com/

2

(Notice	how	**	is	the	Python	operator	for	exponentiation.)

There	are	a	few	things	worth	pointing	out	about	these	examples.	Firstly,	the	Python
interpreter	reads	user	input	as	strings	–	i.e.	sequences	of	characters.	So	for	example,
the	first	user	input	is	read	in	as	the	string	“2	+	3	*	4”.	This	is	treated	by	the
interpreter	as	a	piece	of	syntax	–	in	this	case	valid	syntax	that	represents	an
arithmetic	expression.	The	interpreter	then	uses	the	semantics	to	convert	from	a
string	representing	an	arithmetic	expression	into	the	actual	expression.	So	the
substring	“2”	is	converted	to	its	semantics	(meaning)	–	i.e.	the	number	2.	The
substring	“+”	is	converted	to	its	meaning	–	i.e.	the	addition	operator.	Once	the
interpreter	converts	from	the	syntax	to	the	semantics,	the	interpreter	then	evaluates
the	expression,	displaying	the	result.

This	process	of	converting	from	syntax	to	semantics	is	called	parsing.

Secondly,	the	relationship	between	the	arithmetical	operators	is	what	humans
normally	expect	–	for	example,	multiplication	takes	precedence	over	addition.	When
looking	at	expressions	involving	operators,	we	need	to	consider	both	precedence	and
associativity.

Precedence	of	operators	describes	how	tightly	the	operators	bind	to	the	arguments.
For	example,	exponentiation	binds	more	tightly	than	multiplication	or	division,	which
in	turn	bind	more	tightly	than	addition	or	subtraction.	Precedence	dictates	the	order
of	operator	application	(i.e.	exponentiation	is	done	first,	etc.)

Associativity	describes	the	order	of	application	when	the	same	operator	appears	in	a
sequence	–	for	example	10	-	4	-	3.	All	the	arithmetical	operators	are	left-associative	–
i.e.	the	evaluation	is	from	left	to	right.	Just	like	in	mathematics,	we	can	use	brackets
when	the	desired	expression	requires	the	operators	to	be	evaluated	in	a	different
order.

Finally,	dividing	one	integer	by	another,	using	the	//	divide	operator	(known	as	the	div
operator),	produces	an	integer	–	the	fractional	part	of	the	answer	is	discarded.

These	examples	are	about	integer	arithmetic	–	integers	form	a	built-in	type	in	Python.

>>>	type(3)
<class	'int'>

Note	how	the	abbreviation	for	integers	in	Python	is	int.	Also,	note	that	type	is	a	built-
in	Python	function	that	takes	an	object	(in	this	case	the	number	3)	and	returns	the
type	of	the	object.	We	will	see	plenty	of	examples	of	Python	functions	in	following
sections.

Floats

There	is	another	number	type	that	most	programming	languages	support	–	floats.
Unlike	integers,	which	can	only	store	whole	numbers,	floats	can	store	fractional	parts
as	well.	Below	are	some	examples	involving	floats	in	Python.

>>>	7/4
1.75
>>>	7//4
1

>>>	-7//4
-2
>>>	7.9//3
2.0
>>>	2.0**60
1.152921504606847e+18
>>>	0.5**60
8.6736173798840355e-19
>>>	2e3
2000.0
>>>	type(2e3)
<class	'float'>
>>>	int(2.3)
2
>>>	float(3)
3.0
>>>	5/6
0.8333333333333334
>>>	-5/6
-0.8333333333333334

The	syntax	for	floats	is	a	sequence	of	characters	representing	digits,	optionally
containing	the	decimal	point	character	and	also	optionally	a	trailing	‘e’	and	another
sequence	of	digit	characters.	The	character	sequence	after	the	‘e’	represents	the
power	of	10	by	which	to	multiply	the	first	part	of	the	number.	This	is	called	scientific
notation.

The	first	example	shows	that	dividing	two	integers	with	the	/	operator	gives	a	float
result	of	the	division.	The	single	/	division	is	known	as	float	division	and	will	always
result	in	a	float.	If	an	integer	result	is	desired,	the	//	operator	must	be	used.	This	is
the	integer	division	operator	and	will	divide	the	two	numbers	as	if	they	are	integers
(performs	the	mathematical	operation	div).	Note	that	this	will	always	round	down
towards	negative	infinity,	as	shown	in	the	third	example.	If	one	of	the	numbers	is	a
float,	it	turns	both	numbers	into	their	integer	form	and	then	performs	the	integer
division	but	returns	a	float	answer	still,	as	seen	in	the	third	example.

The	last	two	examples	highlights	one	very	important	aspect	of	floats	–	they	are
approximations	to	numbers.	Not	all	decimal	numbers	can	be	accurately
represented	by	the	computer	in	its	internal	representation.	This	is	because	floats
occupy	a	fixed	chunk	of	memory.	The	amount	of	memory	used	to	store	a	float
constrains	the	precision	of	the	numbers	that	it	can	represent.

Variables	and	Assignments

Most	calculators	allow	results	to	be	stored	away	in	memory	and	later	retrieved	in
order	to	carry	out	complex	calculations.	This	can	be	done	in	Python	by	using
variables.	As	we	will	soon	see,	variables	are	not	just	for	numerical	calculations	but
can	be	used	to	store	any	information	for	later	use.

The	valid	syntax	for	variables	is	any	string	starting	with	an	alphabetic	or	underscore
character	(‘a’-‘z’	or	‘A’-	‘Z’	or	‘’)	followed	by	a	sequence	of	alphanumeric	characters
(alphabetic	+	‘0’-‘9’)	and	‘’.	Python	uses	special	keywords	itself	and	these	cannot	be
used	for	any	other	purpose	(for	example,	as	variable	names).	The	Python	keywords
are	listed	in	the	table	below.	A	way	of	knowing	that	a	word	is	a	keyword	is	that	it	will
appear	in	a	different	colour	in	IDLE.

				False						class						finally				is									return
				None							continue			for								lambda					try
				True							def								from							nonlocal			while
				and								del								global					not								with

				as									elif							if									or									yield
				assert					else							import					pass
				break						except					in									raise

In	later	sections,	we	will	see	that	it	is	important	to	choose	a	good	name	for	variables
that	accurately	shows	what	the	value	is	meant	to	represent.	There	is	a	convention	as
well	in	Python	of	using	lowercase	letters	in	variable	names	and	underscores	to
separate	words,	which	is	adhered	to	in	these	notes.	There	is	not	anything	stopping	us
ignoring	the	points	in	this	paragraph,	but	it	becomes	an	unnecessary	annoyance	for
other	people	reading	our	code.	Below	are	some	examples	of	the	use	of	variables.

>>>	num1	=	2
>>>	num1
2
>>>	12**num1
144
>>>	num2
Traceback	(most	recent	call	last):
		File	"<stdin>",	line	1,	in	<module>
NameError:	name	'num2'	is	not	defined
>>>	num3	=	num1**2
>>>	num3
4

The	first	example	above	shows	an	assignment	–	the	variable	num1	is	assigned	the
value	2.	The	semantics	of	the	assignment	statement	is:	evaluate	(i.e.	work	out	the
value	of)	the	right	hand	expression	and	associate	the	variable	on	the	left	hand	side	of
the	statement	with	that	value.	The	left	hand	side	of	an	assignment	statement	must	be
a	variable	(at	least	for	now	–	later	we	will	see	other	possibilities).	If	the	variable
already	has	a	value,	that	value	is	overwritten	by	the	value	on	the	right	hand	side	of
the	statement.	Note	that	the	assignment	statement	(when	evaluated)	has	no	value	–
the	interpreter	does	not	display	a	value.	Assignments	are	used	for	their	side-effect	–
the	association	of	a	variable	with	a	value.

The	second	example	shows	what	happens	when	we	ask	the	interpreter	to	evaluate	
num1.	The	result	is	the	value	associated	with	the	variable.	The	third	example	extends
this	by	putting	num1	inside	an	arithmetical	expression.	The	fourth	example	shows	what
happens	when	we	try	to	get	the	value	of	the	variable	num2,	to	which	we	have	not	yet
given	a	value.	This	is	known	as	an	exception	and	will	appear	whenever	something	is
typed	that	Python	cannot	understand	or	evaluate.	The	final	example	shows	how
variables	can	appear	on	both	sides	of	an	assignment	(in	this	case,	a	variable	called	
num3	is	assigned	the	value	worked	out	by	evaluating	num1**2;	the	value	of	num1	is	2,	so	
num1**2	is	4	and	this	is	the	value	given	to	num3.

Strings

To	finish	this	section	we	introduce	the	string	type,	which	is	used	to	represent	text,
and	we	give	some	examples	of	type	conversion	and	printing.

>>>	s	=	"Spam	"
>>>	3	*	s
'Spam	Spam	Spam	'
>>>	2	+	s
Traceback	(most	recent	call	last):
		File	"<stdin>",	line	1,	in	
TypeError:	unsupported	operand	type(s)	for	+:	'int'	and	'str'

>>>	type('')
<class	'str'>
>>>	int("42")
42
>>>	str(42)
'42'
>>>	print(s	+	42)
Traceback	(most	recent	call	last):
		File	"<stdin>",	line	1,	in	
TypeError:	cannot	concatenate	'str'	and	'int'	objects
>>>	print(s	+	str(42))
Spam	42

The	syntax	for	strings	is	a	double	or	single	quote,	followed	by	a	sequence	of
characters,	followed	by	a	matching	double	or	single	quote.	Notice	how	the	space
character	is	part	of	the	string	assigned	in	the	variable	s,	as	it	is	contained	within	the
double	quotes.	The	string	s,	therefore,	is	five	characters	in	length.	Notice	carefully
how	this	affects	the	statements	executed	after	it.

As	the	second	example	shows,	the	multiplication	operator	is	overloaded	and
generates	a	string	that	is	the	number	copies	of	the	original	string.

Type	conversion	is	used	to	change	between	a	string	representing	a	number	and	the
number	itself.

The	built-in	print	function	takes	a	string	argument	and	displays	the	result	to	the	user.
Note,	that	in	this	example,	str	converts	42	into	a	string	and	then	the	addition	operator
concatenates	(i.e.	joins)	the	two	strings	together	and	the	result	is	displayed	to	the
user	–	another	example	of	overloading.

Uhh,	you	do	realise,	uh,	he	has	to	be,	uh,…	well,	dead,…	by	the	terms	of	the
card,	uh,	before	he	donates	his	liver.

—	Monty	Python’s	The	Meaning	of	Life

Python	Programming
Writing	Software

Software	is	often	written	by	using	a	program	called	an	Integrated	Development
Environment,	or	IDE.	An	IDE	typically	consists	of	an	editor	(often	with	syntax
highlighting	and	layout	support),	a	compiler	or	interpreter,	class	or	library	browsers
and	other	tools	to	aid	in	software	development	and	maintenance.

In	this	course	we	will	be	using	IDLE,	which	is	an	IDE	for	Python.

When	IDLE	is	started	it	will	look	something	like	this.

The	window	shown	contains	the	running	interpreter.	The	>>>	is	the	interpreter	prompt
–	the	interpreter	is	waiting	for	user	input.	Note:	This	image	is	taken	from	Windows	10
and	will	appear	different	depending	on	the	Operating	System	you	are	using.

Below	is	a	simple	example	of	an	interaction	with	the	interpreter	–	note	the	syntax
highlighting	used	by	IDLE.	The	user	inputs	an	expression	at	the	prompt	(followed	by
pressing	Enter)	and	the	interpreter	responds	by	printing	the	result	and	another
prompt.

>>>	2+3
5
>>>	6*7
42
>>>	print("I	don't	like	spam!")
I	don't	like	spam!

Using	IDLE	to	write	code

Once	we	get	beyond	simple	examples	in	the	interpreter,	we	typically	want	to	be	able
to	save	our	code	so	we	can	use	it	again	later.	We	can	do	this	by	writing	our	code	in	a
file.	IDLE	has	an	editor	window	that	enables	us	to	write	our	code	and	save	it	into	a
file.

In	the	File	menu	choose	New	Window.

This	will	open	a	new	window	similar	to	the	one	below	in	which	to	enter	the	code.

In	this	window	we	will	write	our	code.	Let’s	start	with	the	simplest	program	used	in
programming,	the	“Hello	World!”	program.

Type	the	following	code	into	the	new	window	that	you	just	opened.

print('Hello	World!')

When	you	have	finished	choose	Save	As	from	the	File	menu	and	save	the	file	in	a
folder	in	which	you	want	to	do	Python	development.	Name	the	file	hello.py.	It	is
important	to	use	the	.py	extension	for	Python	files.	Apart	from	making	it	easier	for	us
to	spot	the	Python	files,	various	operating	systems	and	some	tools	also	recognise	the
extension.	You	will	notice	that	if	the	.py	extension	is	missing	the	colours	of	the	code
that	you	write	and	have	written	will	no	longer	be	present	in	the	IDLE	editor	window.
If	this	happens	re-save	the	file	with	the	.py	extension.	Now	under	the	Run	menu
choose	Run	Module	(or	alternatively	press	F5)	to	run	the	program	that	we	have	just
written.	The	output	will	appear	in	IDLE	similar	to	the	following	image.

As	can	be	seen	the	print	function	of	Python	displays	the	data	that	is	the	input	to	the	
print	function	(data	inside	the	brackets)	in	the	interpreter.	In	this	case,	the	string	
'Hello	World!'	is	displayed.

Code	Layout	–	Good	Programming	Practices

Most	editors	will	automatically	lay	out	the	code	with	the	use	of	whitespace	(a
combination	of	spaces	and	tabs).	In	most	programming	languages,	however,
whitespace	is	(mostly)	unimportant,	as	it	does	not	affect	the	code.

So	why	bother	with	layout	then?

It	is	for	human	readability.	Software	engineers	typically	work	in	teams	and	so	they
need	to	share	code.	Consistency	is	important	as	it	makes	it	easier	for	one	human	to
understand	what	another	human	has	written	(we	are	not	machines).	It	also	helps	for
maintenance	and	modification	of	the	code	at	a	later	date	–	if	we	were	looking	at	code

we	wrote	6	months	ago,	it’s	unlikely	we	would	remember	it,	so	we	would	want	it	to	be
easy	to	read.

Python	takes	layout	one	step	further:

Whitespaces	affect	the	semantics!

When	writing	a	block	of	code	(the	body	of	a	function	definition	for	example),	some
way	of	determining	the	start	and	end	of	code	blocks	is	required.	In	many	languages,
keywords	or	some	form	of	brackets	are	used	to	mark	the	start	and	end	of	a	block.

Python	uses	indentation.

When	a	new	block	is	started	(indicated	by	a	:,	the	level	of	indentation	is	increased
(typically	one	tab	stop	or	4	spaces).	After	the	last	statement	in	the	block	the
indentation	level	is	decremented.

It	is	also	regarded	as	good	coding	practice	to	keep	the	width	of	any	code	written	to
within	80	characters	wide.	There	are	multiple	reasons	for	this	including:

It	is	easy	to	read	–	80	characters	is	an	easy	to	read	line	width	especially	for
something	that	we	are	already	straining	our	brains	to	read,	such	as	code.
Screen	sizes	are	different	–	If	we	write	code	on	a	wide	screen	and	do	not	care
about	line	width	and	later	read	it	on	a	standard	width	monitor	then	it	may	not
necessarily	fit	(even	with	the	window	enlarged),	producing	unexpected	line
wrapping.
An	A4	page,	in	portrait	layout,	with	normal	margins	and	font	size	is
approximately	80	characters	wide	–	if	we	keep	within	this	then	our	code	should
print	without	any	unwanted	line-wrap
Windows	that	are	used	for	writing	code	have	a	default	width	of	just	over	the	80
characters	wide.	If	the	80	characters	width	is	changed	then	the	window	needs	to
be	resized	to	fit.

I	arrange,	design,	and	sell	shrubberies

In	this	section	we	will	look	at	some	issues	relating	to	the	design	and	implementation
of	software	via	a	simple	example.	As	we	go	we	will	introduce	more	of	Python’s	syntax
and	semantics.	Before	doing	so,	we	look	at	the	software	lifecycle.	One	description	of
the	software	lifecycle	can	be	found	in	Wikipedia	at
https://en.wikipedia.org/wiki/Software_development_process.

Basically,	the	software	lifecycle	describes	all	the	processes	required	in	order	to	follow
good	software	engineering	practices	–	the	aim	being	to	produce	high	quality	software.
The	basic	components	of	the	software	lifecycle	are	as	follows:

Requirements	gathering
What	does	the	client	want?
What	operating	system	will	the	system	run	on?
What	commercial	off-the-shelf	(COTS)	software/hardware	will	be	available?
Will	a	hazard/risk	analysis	be	required?	(This	is	often	needed	when	the
software	will	be	part	of	a	safety	or	security	critical	system)
What	other	systems	will	this	system	interface	to?

Design
Top-level	specification	of	the	system.	This	may	be	informal	-	e.g.	a
structured	English	specification,	or	formal	–	using	logic	and	mathematics
(e.g.	for	safety/security	critical	systems)
Problem	decomposition

https://en.wikipedia.org/wiki/Software_development_process

Module	design
Interface	design

Coding
Implementation	of	modules
System	integration

Testing
Bottom-up	(unit)	testing
Integration	testing	(gluing	modules	together)
Systems	testing	(does	the	overall	system	perform	as	required?)

Maintenance
Fix	problems
Add	features
Respond	to	changed	client	requirements

Earlier	phases	often	need	to	be	revisited	as	problems	are	uncovered	in	later	phases.
In	this	course	we	will	concentrate	mostly	on	the	design,	coding	and	testing	phases,
typically	by	working	through	examples.

In	follow-on	courses,	we	will	broaden	the	scope	and	move	from	programming	as
individuals	to	software	development	by	teams	of	software	engineers	where	no
individual	can	reasonably	be	expected	to	have	a	deep	understanding	of	all	the
software	relating	to	a	given	project.

Other	Man:	Well	I’m	very	sorry	but	you	didn’t	pay!

Man:	Ah	hah!	Well	if	I	didn’t	pay,	why	are	you	arguing?

Ah	HAAAAAAHHH!	Gotcha!

Other	Man:	No	you	haven’t!

Man:	Yes	I	have!	If	you’re	arguing,	I	must	have	paid.

Other	Man:	Not	necessarily.	I	could	be	arguing	in	my	spare	time.

Man:	I’ve	had	enough	of	this!

Other	Man:	No	you	haven’t.

Man:	Oh	shut	up!

Introduction	to	Software	Design	and
Implementation
Asking	a	Question

There	comes	a	time	when	input	from	the	user	is	required	to	be	able	to	collect	data	to
process.	This	can	be	done	using	the	input	function.	This	function	takes	a	string
prompt	as	an	argument.	When	the	code	is	run	the	user	sees	the	prompt	and	types	in
the	data.	input	takes	this	data	in	as	a	string,	i.e.	a	piece	of	text.	An	example	of	using
input	follows.

name	=	input("What	is	your	name?	")
print("Hello",	name	+	"!	Have	a	nice	day.")

Saving	as	input.py	and	running	the	code,	the	output	is	similar	to

>>>	
What	is	your	name?	Arthur,	King	of	the	Britons
Hello	Arthur,	King	of	the	Britons!	Have	a	nice	day.

Notice	that	the	input	prompt	has	a	space	at	the	end	after	the	question	mark.	This
space	is	included	to	separate	the	question	from	the	user’s	response	in	the	interaction.
Without	it,	the	interaction	would	look	less	appealing	to	the	user:	What	is	your	name?
Arthur,	King	of	the	Britons

As	the	example	shows,	strings	can	be	joined	together	to	form	one	string	for	use	in	a	
print	function.	This	is	very	useful	in	situations	such	as	this	where	we	want	to	print	a
combination	of	messages	and	values	(as	in	our	example).	The	examples	show	both
methods	of	joining	strings	together	for	printing.	The	,	is	the	first	one	used,	it	joins	any
items	together	with	spaces	automatically	placed	in	between.	The	second	is	the	+
symbol,	it	joins	the	items	together	by	adding	one	string	to	the	next	to	form	a	single
string.

input	Syntax	
variable_name	=	input(string_prompt)
input	Semantics
variable_name	is	given	the	string	value	of	what	the	user	types	in	after	being	
prompted.
print	Syntax	
print(item1,	item2,	...,	itemn)
print	Semantics	
Each	item	is	displayed	in	the	interpreter,	with	a	space	separating	each	item.	print	
also	takes	two	optional	arguments.	The	sep	argument	changes	what	the	separator	
between	the	items.	If	not	given,	the	items	are	separated	with	a	space	otherwise,	
the	items	will	be	separated	by	the	given	string.	For	example:
				print(item1,	item2,	...,	itemn,	sep="separator")
Results	in	the	items	being	separated	by	the	"separator"	string	instead	of	spaces.	
The	end	argument	changes	what	is	printed	after	all	the	items.	Multiple	print	
function	calls	will	display	output	on	separate	lines,	unless	the	end	argument	is	
changed	as	the	default	is	to	end	prints	with	a	newline	character.	For	example:	
				print(item1,	item2,	...,	itemn,	end="ending")
Will	end	the	print	with	the	"ending"	string	after	all	the	items	are	printed.	

True	or	False

In	programing	there	is	always	a	time	when	a	test	is	required.	This	can	be	used,	for
example,	to	see	if	a	number	has	a	relationship	with	another	or	if	two	objects	are	the
same.

There	are	several	character	combinations	that	allow	for	testing.

==	is	equal	to
!=		not	equal	to
<			Less	than
>			Greater	than
<=		Less	than	or	equal	to
>=		Greater	than	or	equal	to

>>>	1	==	1

True
>>>	2	!=	1
True
>>>	2	<	1
False
>>>	"Tim"	<	"Tom"
True
>>>	"Apple"	>	"Banana"
False
>>>	"A"	<	"a"
True
>>>	type(True)
<class	'bool'>

As	can	be	seen	these	statements	result	in	either	True	or	False.	True	or	False	are	the
two	possible	values	of	the	type	bool	(short	for	boolean).	Also	note	that	upper	and
lower	case	letters	in	strings	are	not	equal	and	that	an	upper	case	letter	is	less	than
the	corresponding	lower	case	letter.	The	reason	for	this	is	that	computers	can	only
understand	numbers	and	not	any	characters.	Therefore,	there	is	a	convention	set	up
to	map	every	character	to	a	number.	This	convention	has	become	the	ASCII	scheme.
ASCII	makes	the	upper	case	letters	be	the	numbers	65	through	to	90	and	the	lower
case	letters	the	numbers	97	to	122.

Making	Decisions

The	ability	to	do	a	test	has	no	use	if	it	can	not	be	used	in	a	program.	It	is	possible	to
test	and	execute	a	body	of	code	if	the	test	evaluates	to	True.

This	is	done	using	the	if	statement.

Let’s	start	with	a	simple	example.	The	following	code	is	an	example	of	an	if	statement
that	will	display	a	hello	message	if	the	name	input	by	the	user	is	"Tim".

name	=	input("What	is	your	name?	")

if	name	==	"Tim"	:
				print("Greetings,	Tim	the	Enchanter")

Saving	this	code	as	if.py	and	running,	the	output	from	this	code	looks	like:

>>>	
What	is	your	name?	Tim
Greetings,	Tim	the	Enchanter

>>>	
What	is	your	name?	Arthur,	King	of	the	Britons

As	can	be	seen	if	name	does	not	equal	"Tim"	then	nothing	is	output	from	the	code.

If	Statement	Syntax

<div	class="language-python	highlighter-rouge"><div	class="highlight"><pre	

class="highlight"><code>if	test
:
body	</code></pre></div>				</div>

If	statements	start	with	an	if	followed	by	a	test	and	then	a	colon.	The	body	of
code	to	be	executed	starts	on	a	new	line	and	indented	following	the	Python
indentation	rules.

Semantics

If	test	evaluates	to	True	then	body	is	executed.	Otherwise,	body	is	skipped.

What	if	we	want	to	run	a	different	block	of	code	if	the	test	is	False?	This	requires	an
if,	else	statement	Our	example	can	be	modified	to	print	a	different	message	if	name
is	not	"Tim".

name	=	input("What	is	your	name?	")

if	name	==	"Tim"	:
				print("Greetings,	Tim	the	Enchanter")
else	:
				print("Hello",	name)

Saving	this	code	as	if_else.py	,	the	output	from	this	code	looks	like:

>>>	
What	is	your	name?	Tim
Greetings,	Tim	the	Enchanter

>>>	
What	is	your	name?	Arthur,	King	of	the	Britons
Hello	Arthur,	King	of	the	Britons

If-Else	Syntax

<div	class="language-python	highlighter-rouge"><div	class="highlight"><pre	
class="highlight"><code>	if	<span	
class="n">test:
body1		else:

body2	</code></pre></div>				</div>

The	if	segment	of	the	If-Else	statement	is	the	same	is	for	if.	After	body1	of	the
if	on	a	new	line	and	de-dented	is	an	else	followed	by	a	colon.	Then	body2	starts
on	a	new	line	and	indented	again	following	the	Python	indentation	rules.
Semantics	If	test	evaluates	to	True	then	body1	is	executed.	Otherwise	body2	is
executed.

It	is	also	possible	to	carry	out	multiple	tests	within	the	same	if	statement	and	execute
different	blocks	of	code	depending	on	which	test	evaluates	to	True.	We	can	do	this
simply	by	using	an	if,	elif,	else	statement.	Our	example	can	be	modified	further	to
look	like	the	following

name	=	input("What	is	your	name?	")

if	name	==	"Tim"	:
				print("Greetings,	Tim	the	Enchanter")
elif	name	==	"Brian"	:
				print("Bad	luck,	Brian")
else	:
				print("Hello",	name)

Saving	this	code	as	if_elif_else.py	,	our	example	now	has	the	following	output:

>>>	
What	is	your	name?	Tim
Greetings,	Tim	the	Enchanter

>>>	
What	is	your	name?	Brian
Bad	luck,	Brian

>>>	
What	is	your	name?	Arthur,	King	of	the	Britons
Hello	Arthur,	King	of	the	Britons

If-Elif-Else	Syntax

<div	class="language-python	highlighter-rouge"><div	class="highlight"><pre	
class="highlight"><code>if	<span	
class="n">test1:
body1	elif	<span	
class="n">test2:
body2	.	.
	.	elif	<span	
class="n">testn:
bodyn	else:

bodyn1	</code></pre></div>				</div>

The	if	segment	of	the	If-Elif-Else	statement	is	the	same	as	the	if	statement.
This	is	the	followed	by	an	elif	on	a	new	line	and	de-dented	from	the	body	of	the	
if.	This	is	followed	by	the	next	test	and	a	colon.	The	body	of	this	test	starts	on	a
new,	indented	line.	This	is	repeated	for	all	the	elif	statements	required.	Then
(if	required)	an	else	statement	is	last	as	described	in	the	If-Else	syntax	section.

Semantics

If	test1	evaluates	to	True	then	body1	is	executed.	Otherwise,	if	test2	evaluates

to	True	body2	is	executed.	If	all	the	tests	are	tested	and	if	none	evaluate	to	True
then	bodyn1	is	executed.	In	other	words,	the	first	(and	only	the	first)	True	test	in
the	if-elif-elif-…	chain	executes	its	body.	If	there	is	no	else	statement	and	none
of	the	tests	are	True,	then	nothing	is	executed.	The	test	of	an	if/elif	statement	is
known	as	the	condition,	because	it	specifies	when	the	body	will	execute.	if,
elif,	and	else	statements	are	also	known	as	conditional	statements.

Being	Repetitive

We	are	off	to	a	good	start,	but	the	interaction	is	not	very	long.	We	are	not	doing	much
before	we	abruptly	end	the	conversation.	For	our	next	addition	to	the	program,	we
would	like	to	be	able	to	talk	to	the	user	for	as	long	as	we	can.	Let’s	accomplish	this	by
asking	the	user	for	a	topic,	talking	about	that	topic,	then	asking	for	another	topic.
Here	is	an	example	of	what	we	might	want:

What	is	your	name?	Tim
Greetings,	Tim	the	Enchanter
What	do	you	want	to	talk	about?	Python
Do	you	like	Python?	yes
Why	do	you	think	that?	it's	easy	to	use
I	also	think	that	it's	easy	to	use
What	do	you	want	to	talk	about?	coconuts
Do	you	like	coconuts?	no
Why	do	you	think	that?	they	cannot	migrate
I	also	think	that	they	cannot	migrate
What	do	you	want	to	talk	about?	CSSE1001
Do	you	like	CSSE1001?	very	much
Why	do	you	think	that?	the	course	notes	are	very	useful
I	also	think	that	the	course	notes	are	very	useful
What	do	you	want	to	talk	about?	nothing
Okay.	Goodbye,	Tim!

To	do	this,	we	will	need	to	have	a	way	to	repeat	the	discussion	until	the	conversation
is	over.	We	can	use	a	construct	called	a	while	loop.	We	need	to	consider	what	code
should	be	repeated	(in	this	case,	the	discussion	of	a	topic)	and	when	it	should	keep
going	(in	this	case,	when	the	topic	is	not	“nothing”).	Let’s	update	our	code	to	include
the	repetition.	This	code	can	be	downloaded	as	interaction_while.py

name	=	input("What	is	your	name?	")
if	name	==	"Tim"	:
				print("Greetings,	Tim	the	Enchanter")
elif	name	==	"Brian"	:
				print("Bad	luck,	Brian")
else	:
				print("Hello",	name)

topic	=	input("What	do	you	want	to	talk	about?	")
while	topic	!=	"nothing"	:
				like	=	input("Do	you	like	"	+	topic	+	"?	")
				response	=	input("Why	do	you	think	that?	")
				print("I	also	think	that",	response)
				topic	=	input("What	do	you	want	to	talk	about?	")

print("Okay.	Goodbye,	"	+	name	+	"!")

The	topic	=	input(...)	line	above	the	loop	asks	for	the	first	topic.	The	while	topic	!=	

"nothing"	line	checks	if	the	given	condition	is	True,	and	if	it	is,	then	the	loop	body
repeatedly	performs	the	actions	until	the	condition	is	False.	Notice	that	the	last	line	of
the	body	asks	for	a	new	topic,	which	is	used	as	the	topic	for	the	next	repetition	of	the
loop.	If	that	new	topic	is	nothing,	then	the	loop	test	topic	!=	"nothing"	becomes	False,
so	the	while	loop	will	stop	running	and	the	code	will	continue	after	the	loop	body
(where	the	indentation	stops).	Notice	that	we	are	asking	if	the	user	likes	the	topic,
but	we	are	not	using	the	response	that	the	user	gives.	Ignoring	the	input	from	the
user	is	very	unusual	behaviour,	but	we	have	done	it	here	to	simplify	the	example.	Run
this	code	to	experiment	with	it.	What	happens	when	the	first	topic	is	“nothing”?	Why
does	that	happen?	One	thing	that	might	seem	a	bit	odd	about	our	code	is	that	the	
topic	=	input(...)	line	occurs	in	two	places,	once	before	the	while	loop,	and	once	at
the	end	of	the	loop	body.	This	has	to	happen	this	way	because	the	topic	needs	to	be
entered	in	before	the	topic	!=	"nothing"	test	happens.	We	can	avoid	this	by	exiting	the
loop	from	inside	the	body.	This	is	done	using	the	break	keyword.	When	break	is
executed	inside	a	loop,	the	program	will	immediately	exit	the	loop	and	continue	after
the	body.	We	can	use	this	with	an	if	statement	to	specify	how	the	loop	should	finish.
This	code	is	available	at	interaction_break.py

name	=	input("What	is	your	name?	")
if	name	==	"Tim"	:
				print("Greetings,	Tim	the	Enchanter")
elif	name	==	"Brian"	:
				print("Bad	luck,	Brian")
else	:
				print("Hello",	name)

while	True	:
				topic	=	input("What	do	you	want	to	talk	about?	")
				if	topic	==	"nothing"	:
								break
				like	=	input("Do	you	like	"	+	topic	+	"?	")
				response	=	input("Why	do	you	think	that?	")
				print("I	also	think	that",	response)

print("Okay.	Goodbye,	"	+	name	+	"!")

The	first	change	that	we	have	made	is	the	condition	test	of	the	while	loop.	Since	the
loop	keeps	going	as	long	as	the	condition	is	True,	that	means	that	“while	True”	will
keep	going	until	the	break	is	reached	(or	it	will	go	on	forever	if	there	is	no	break;	loops
that	go	forever	are	called	infinite	loops).	Using	break	in	this	way	means	that	the	topic	
=	input(...)	line	only	has	to	appear	once	in	our	code.	In	many	situations,	it	is
considered	bad	programming	practice	to	have	logic	that	exits	a	loop	from	within	the
middle	of	the	loop	body.	This	is	because	it	complicates	understanding	the	loop’s
behaviour.	The	reader	needs	to	understand	the	loop’s	logical	condition	plus	find	and
understand	the	break	logic	in	the	middle	of	the	loop	body.	In	the	example	above,	the
loop	body	is	short	and	simple	enough	that	finding	the	break	logic	is	not	difficult.
However,	once	the	logic	becomes	more	complex	and	the	code	longer	it	would	be
harder	to	read.	Try	to	avoid	writing	code	that	exits	a	loop	from	the	middle	of	the
loop’s	body.	But,	be	aware	that	it	is	possible	and	you	may	need	to	identify	this	type	of
logic	in	someone	else’s	code.

While	Loop	Syntax

<div	class="language-python	highlighter-rouge"><div	class="highlight"><pre	
class="highlight"><code>while	<span	
class="n">test:

body	</code></pre></div>				</div>

The	first	line	contains	the	word	while	followed	by	a	boolean	test	and	a	:.
Following	is	the	body,	an	indented	block	of	code.

Semantics

If	test	evaluates	to	True	then	the	body	is	executed.	Then	the	test	is	evaluated
again,	if	it	is	still	True,	then	the	body	is	executed	again.	This	process	repeats
until	the	test	fails	(becomes	False).	Each	repetition	is	called	an	iteration
through	the	loop,	and	the	act	of	performing	a	repeated	task	is	called	iterating.
When	the	test	becomes	False	(or	if	it	is	False	to	start	with),	we	“exit	the	loop”
and	execute	the	next	statement	after	the	indented	block.	If	a	break	statement	is
executed	inside	the	loop,	the	loop	will	exit	immediately.

Then	you	must	cut	down	the	mightiest	tree	in	the	forest…	with…	a	herring!

Loop	Invariants
It	is	not	always	easy	to	tell	if	a	loop	will	create	the	correct	result	in	every
circumstance.	Therefore,	we	use	a	loop	invariant	that	states	if	this	condition	is	True
then	the	result	should	be	correct.	For	this	to	work	completely	the	invariant	needs	to
be	True	at	the	start,	at	the	end	of	the	loop	body	and	if	the	loop	condition	is	False	the
invariant	must	still	be	True.

Here	is	an	example	that	finds	the	prime	factors	of	a	number	and	puts	them	into	a	list.
This	function	will	use	the	next_prime	function	found	in	prime.py.

from	prime	import	*

def	factorise(n)	:
				"""Returns	a	list	of	the	prime	factors	of	'n'.

				Parameters:
								n	(int):	Number	for	which	factors	are	to	be	found.

				Preconditions:
								n	>=	2

				Return:
								list<int>:	Prime	factors	of	'n'.
				"""
				prime	=	2
				factors	=	[]
				while	n	>	1	:
								#	Loop	Invariant:	product(factors)	*	n	==	initial	n
								while	n	%	prime	==	0	:
												factors.append(prime)
												n	/=	prime
								prime	=	next_prime(prime)
				return	factors

This	function	starts	with	the	current	prime	number	set	to	2,	as	2	is	the	first	prime
number,	and	an	empty	list	to	store	the	primes	in.	We	then	start	a	while	loop	that
keeps	iterating	as	long	as	n	>	1.	We	do	not	want	to	go	less	than	2	as	there	are	no

primes	less	than	2.	It	is	here,	in	a	comment,	that	we	introduce	our	loop	invariant.	In
this	case	it	is	that	the	product	of	all	the	primes	found	so	far	multiplied	by	the	current
number	that	we	are	operating	on	equals	the	initial	number.	We	then	start	another
while	loop	that	keeps	appending	the	current	prime	number	to	the	factors	list	while
the	current	number	is	divisible	by	that	prime,	also	dividing	the	current	number	by
that	prime	to	move	onto	the	next	number.	Back	in	the	first	while	loop	we	use	the	
next_prime	function	to	move	onto	the	next	prime	number.	The	last	thing	the	function
does	is	return	the	list	of	factors.

Saving	as	factorise.py	we	can	run	a	few	tests	to	show	this	function	working.

>>>	factorise(10)
[2,	5]
>>>	factorise(340)
[2,	2,	5,	17]
>>>	2	*	2	*	5	*	17
340

All	right	…	all	right	…	but	apart	from	better	sanitation	and

medicine	and	education	and	irrigation	and	public	health	and	roads	and	a

freshwater	system	and	baths	and	public	order	…	what	have	the	Romans

ever	done	for	us?

—	Monty	Python’s	Life	of	Brian

Functional	Decomposition
Reusing	the	Code
In	the	previous	readings	we	used	control	structures	to	implement	a	simple
conversation	between	a	user	and	the	computer.	It	is	not	very	much	to	ask	the	user	for
all	the	topics	to	discuss.	Let’s	add	in	some	code	that	starts	off	with	a	query	about
university,	and	make	the	computer’s	reply	“That’s	very	interesting”.	In	principle,	this
is	easy,	because	we	already	have	code	that	does	a	discussion,	so	perhaps	we	can
reuse	it	by	just	copying	it	and	changing	certain	parts.

name	=	input("What	is	your	name?	")
if	name	==	"Tim"	:
				print("Greetings,	Tim	the	Enchanter")
elif	name	==	"Brian"	:
				print("Bad	luck,	Brian")
else	:
				print("Hello	"	+	name	+	".")

like	=	input("Do	you	like	university?	")
response	=	input("Why	do	you	think	that?	")
print("That's	very	interesting.")

while	True	:
				topic	=	input("What	do	you	want	to	talk	about?	")
				if	topic	==	"nothing"	:
								break
				like	=	input("Do	you	like	"	+	topic	+	"?	")
				response	=	input("Why	do	you	think	that?	")

				print("I	also	think	that",	response)

print("Okay.	Goodbye,	"	+	name	+	"!")

This	works,	but	there	are	a	couple	of	things	that	might	go	wrong	with	copying	code
like	this.	First,	it	makes	the	code	look	more	complicated	than	it	is,	and	it	is	harder	to
read	when	the	code	is	in	two	places	instead	of	one.	The	second	issue	is	to	do	with
updating	the	program:	if	we	want	to	modify	how	a	discussion	works,	then	we	would
need	to	update	the	code	in	two	separate	places.	Worse,	if	we	forget	one	of	those	two
places,	then	the	two	discussions	become	different.

What	we	want	to	be	able	to	do	is	to	pull	out,	or	abstract	the	idea	of	a	“discussion”	into
a	separate	part	of	the	code,	and	then	be	able	to	easily	use	that	code	in	as	many	places
as	possible.	Ideally,	we	want	to	end	up	with	code	that	behaves	like	this	(with	code
instead	of	the	comments):

#	have	a	discussion	on	"university"
print("That's	very	interesting.")
while	True	:
				topic	=	input("What	do	you	want	to	talk	about?	")
				if	topic	==	"nothing"	:
								break
				#	have	a	discussion	on	"topic"
				print("I	also	think	that")#	,	user's	response

And	then	somewhere	else	in	the	code,	we	can	define	how	a	discussion	works.	This
abstraction	is	called	a	function.	Here	is	what	the	definition	of	a	“discuss”	function
looks	like	in	Python:

def	discuss(topic)	:
				like	=	input("Do	you	like	"	+	topic	+	"?	")
				response	=	input("Why	do	you	think	that?	")
				return	response

We	use	the	def	keyword	to	say	that	we	are	defining	the	function	called	discuss.	Inside
parentheses,	we	state	the	formal	parameters,	also	called	arguments,	that	the	function
takes,	which	are	the	bits	of	information	that	the	function	needs	to	know	to	complete
its	task.	In	this	case,	we	cannot	discuss	something	without	knowing	what	topic	to
discuss,	so	we	specify	that	the	discuss	function	takes	a	single	parameter,	which	we
will	give	the	name	topic.	After	the	first	line	is	an	indented	body	of	code,	most	of	which
we	are	already	familiar	with.	In	this	case,	the	discussion	needs	to	supply	or	‘give
back’	a	result	at	the	end,	which	is	the	response	that	the	user	entered.	We	do	this
using	the	return	keyword,	which	is	shown	in	the	last	line	above.	When	a	return
statement	is	reached,	the	function	will	end	immediately;	if	there	is	a	value	after	the
return	keyword,	it	is	the	result	that	is	‘given	back’	(we	say	the	value	is	returned).
Every	time	that	we	use	the	discuss	function,	this	body	of	code	is	what	actually	gets
executed.	The	indentation	behaves	in	the	same	way	we’ve	seen	before	–	when	we	stop
indenting,	then	we	have	finished	the	function	definition.	Now	that	we	have	this
abstraction,	we	can	use	the	discuss	function	instead	of	using	the	actual	discussion
code	directly:

name	=	input("What	is	your	name?	")
if	name	==	"Tim"	:

				print("Greetings,	Tim	the	Enchanter")
elif	name	==	"Brian"	:
				print("Bad	luck,	Brian")
else	:
				print("Hello	"	+	name	+	".")

discuss("university")
print("That's	very	interesting.")

while	True	:
				topic	=	input("What	do	you	want	to	talk	about?	")
				if	topic	==	"nothing"	:
								break
				response	=	discuss(topic)
				print("I	also	think	that",	response)

print("Okay.	Goodbye,	"	+	name	+	"!")

The	full	program	that	we	have	written	is	in	interaction.py.	This	file	also	includes
comments,	which	are	discussed	in	the	next	section.

Notice	the	use	of	the	return	value	in	this	line:	response	=	discuss(topic).	This	will
execute	the	discuss	function	above,	and	the	value	that	is	returned	is	assigned	to	the
variable	response.	The	line	discuss("university")	shows	a	situation	where	our	function	is
used	for	its	side-effect	of	interacting	with	the	user.	The	value	is	still	returned	by	the
function,	but	it	is	discarded	by	the	main	program.

Function	Syntax

A	definition	has	the	following	form:

<div	class="language-python	highlighter-rouge"><div	class="highlight"><pre	
class="highlight"><code>def	<span	
class="nf">function_name(<span	
class="n">arg1,	arg2
,	...)	
:
body	</code></pre></div>				</div>

Function	definitions	start	with	the	word	def,	followed	by	a	function_name	which
follows	the	same	syntax	rules	as	for	variable	names.	In	parentheses	is	a	comma
separated	list	of	arguments	–	these	are	all	names	of	variables	and	are	usually
called	the	formal	parameters.	The	body	is	an	indented	sequence	of
statements.

Executing,	or	“calling”,	a	function	uses	the	syntax

<div	class="language-python	highlighter-rouge"><div	class="highlight"><pre	
class="highlight"><code>function_name
(value1,	<span	
class="n">value2,	...
)	</code></pre></div>				</div>

The	comma-separated	values	are	called	the	actual	parameters.	The	number	of

values	must	be	the	same	as	the	number	of	args	in	the	definition.

Semantics

When	a	function	is	called,	the	actual	parameters	are	associated	with	the	formal
parameters.	That	is,	each	arg	is	treated	as	a	variable	with	the	corresponding	
value.	Then	the	body	is	executed.	After	that,	the	program	will	continue	from	the
point	where	the	function	was	called.	If	a	return	statement	is	executed,	then	the
function	will	exit	immediately.	The	resulting	value	of	the	function	call	will	be
the	value	used	in	the	return	statement.

Another	example	of	function	definition	and	use	Although	addition	is	built	into
Python	we	can	create	our	own	definition	as	follows.

<div	class="language-python	highlighter-rouge"><div	class="highlight"><pre	
class="highlight"><code>def	<span	
class="nf">add(n<span	
class="p">,	m)	<span	
class="p">:
return	n	+
	m	</code></pre></div>				</div>

In	detail	–	def	introduces	the	function	definition	for	add.	The	name	of	the
function	is	add	and	its	formal	parameters	are	n	and	m.	The	function	simply
computes	the	sum	of	n	and	m	and	returns	that	as	the	result	of	the	function	(using
the	return	statement).

Here	are	some	example	uses.

<div	class="language-python	highlighter-rouge"><div	class="highlight"><pre	
class="highlight"><code>>>>	<span	
class="n">add(2<span	
class="p">,	3)	<span	
class="mi">5	>>>	<span	
class="mi">3	*	add<span	
class="p">(2,	<span	
class="mi">3)	15	
</code></pre></div>				</div>

In	the	first	case	we	call	the	function	passing	in	actual	parameters	2	and	3.
When	the	function	is	evaluated,	n	gets	the	value	2	and	m	gets	the	value	3.	The
function	returns	5	as	is	seen	when	evaluated	in	the	interpreter.	The	second
example	shows	that	we	can	use	a	call	to	the	function	within	an	arithmetic
expression.

Decomposing	Problems
There	is	more	to	software	engineering	than	knowing	how	to	write	code.	Part	of	the
design	process	discussed	above	is	problem	decomposition.	If	we	are	given	a
description	of	a	problem	or	task,	how	can	we	write	a	program	that	solves	the

problem?

The	problem	we	will	work	on	in	this	section	is	“write	a	program	to	find	the	nth	prime
number”.	The	first	prime	is	2,	the	second	is	3,	the	third	is	5	and	so	on.

The	first	step	(after	we	understand	the	problem)	is	to	decompose	the	problem	into
simpler	and	simpler	subproblems	until	we	reach	a	point	where	the	subproblems	are
easy	to	implement.

Given	we	need	to	find	the	nth	prime	number,	we	could	start	at	some	prime	(like	2	or
3)	and	find	the	next	prime	number.	If	we	repeat	this	process,	we	will	get	to	the	prime
we	want.	So	an	interesting	subproblem	is	“given	a	number	n,	find	the	next	prime
number	after	n”.

To	do	this	we	can	repeatedly	look	at	the	next	number	and	ask	if	that	number	is	a
prime,	if	so	we	have	finished,	if	not	we	keep	looking.	So	the	next	interesting
subproblem	is	“given	a	number	n	determine	if	n	is	a	prime”.

Recall	that	a	prime	is	a	number	that	is	divisible	by	only	itself	and	one.	We	can
therefore	test	for	a	number	being	a	prime	if	we	can	test	for	divisibility	of	every
number	from	2	up	to	n.	So,	the	last	subproblem	is	“given	numbers	n	and	m,	determine
if	m	divides	n	(exactly)”.

Divisible	or	not	Divisible
There	is	a	useful	mathematical	operation	that	can	be	used	for	testing	for	divisibility.
The	operator	%	is	known	as	mod	or	modulo.	It	returns	the	remainder	of	division,
making	it	useful	to	test	for	divisibility.

>>>	7	%	2
1
>>>	7	%	4
3
>>>	9	%	3
0
>>>	10	%	5	==	0
True
>>>	7	%	4	==	0
False

The	first	three	results	are	because	7	//	2	is	3	with	remainder	1,	7	//	4	is	1	with
remainder	3,	and	9	//	3	is	3	with	remainder	0.	Testing	for	divisibility	is	the	same	as
testing	if	the	remainder	is	equal	to	0.	So,	10	is	divisible	by	5,	and	7	is	not	divisible	by	4.

Now	we	have	reached	a	level	of	detail	that	we	know	how	to	write	it	all	in	Python	code,
so	we	can	now	start	writing	the	code,	building	up	to	larger	subproblems.

Is	a	Number	Prime?
We	will	write	a	function	called	is_prime	to	test	a	number	and	return	whether	it	is	a
prime	number	or	not,	using	the	idea	above	of	testing	numbers	from	2	to	n.	This	code
can	be	downloaded	as	the	file	is_prime1.py.

def	is_prime(num)	:
				"""Returns	True	iff	'num'	is	prime.

				Parameters:

								num	(int):	Integer	value	to	be	tested	to	see	if	it	is	prime.

				Return:
								bool:	True	if	'num'	is	prime.	False	otherwise.

				Preconditions:
								num	>	1
				"""
				i	=	2
				while	i	<	num	:
								if	num	%	i	==	0	:
												return	False
								i	=	i	+	1
				return	True

The	input	to	the	function	is	the	number	num,	this	is	the	number	that	we	wish	to	test	if
it	is	prime.	Notice	in	the	comment	there	is	a	precondition.	As	we	discussed	earlier,
preconditions	form	a	“contract”	with	the	user;	the	function	will	work	only	if	certain
conditions	are	met.	So,	for	example,	if	someone	uses	is_prime	with	a	number	less	than
2,	then	the	result	could	be	anything	-	in	this	case,	an	incorrect	value	will	be	returned,
in	other	cases	the	function	could	cause	an	error	-	but	that	is	the	caller’s	problem
because	this	falls	outside	the	contract.

The	first	line	of	the	function	sets	i	to	2,	i	is	the	counting	variable	that	is	being	used	to
keep	track	of	the	current	value	to	test.	It	is	common	coding	practice	to	use	i	(and	j
and	k	as	counting	variables	in	loops).	The	next	line	is	a	while,	this	while	tests	if	i	<	
num,	this	will	mean	that	we	can	test	the	divisibility	of	all	the	numbers	less	than	num.	The
first	line	of	the	body	of	code	in	the	while	is	an	if	statement.	Inside	the	while	loop,	all
we	need	to	do	is	check	if	i	divides	num	using	the	%	operator.	If	i	does	divide	num	then	num
is	not	prime,	therefore	the	body	of	the	if	statement	is	to	simply	return	False.	Notice
that	this	takes	advantage	of	the	way	return	works:	a	return	statement	will	end	the
function	immediately;	at	this	stage,	we	already	know	that	num	is	not	prime,	so	we	can
return	immediately	and	ignore	the	rest	of	the	function.	The	last	line	of	the	while	body
is	to	increment	i	by	1,	this	moves	onto	the	next	number	to	check.	The	last	line	of	the
function	is	to	return	True.	This	again	uses	the	“stop	immediately”	property	of	return
statements:	if	the	function	has	not	returned	False	by	now,	then	the	if	num	%	i	==	0:
test	never	became	True	during	the	while	loop,	so	we	know	that	num	must	be	prime,	so
we	return	True.

Here	are	a	couple	of	examples	of	is_prime.	Try	out	some	more	to	test	your
understanding	of	the	function.

>>>	is_prime(4)
False
>>>	is_prime(101)
True

This	code	works	fine	but	we	can	do	better!	Firstly	note	that	if	2	does	not	divide	num
then	there	is	no	point	testing	if	other	even	numbers	divide	num	(as	all	even	numbers
are	divisible	by	2).	We	only	need	to	consider	odd	i.	Secondly	if	i	does	divide	num	then
there	is	a	j	such	that	num	==	i*j.	Therefore,	if	num	has	a	factor	then	one	will	be	less
than	or	equal	to	the	square	root	of	num.	Summarising,	we	only	need	to	test	if	2	divides	
num	and	if	any	odd	i	less	than	or	equal	to	the	square	root	of	num	divide	num.

The	function	below	implements	these	ideas.	Update	the	definition	to	match	the
following	code,	or	download	is_prime2.py.

import	math

def	is_prime(num)	:
				"""Returns	True	iff	'num'	is	prime.

				Parameters:
								num	(int):	Integer	value	to	be	tested	to	see	if	it	is	prime.

				Return:
								bool:	True	if	'num'	is	prime.	False	otherwise.

				Preconditions:
								num	>	1
				"""
				if	num	==	2	:
								return	True
				elif	n	%	2	==	0	:
								return	False

				sqrt_num	=	math.sqrt(num)
				i	=	3
				while	i	<=	sqrt_num	:
								if	num	%	i	==	0	:
												return	False
								i	=	i	+	2
				return	True

The	first	line	introduces	an	import	statement.	This	is	used	to	load	a	module	of	other
functions	and	data	that	could	be	useful.	In	this	case	the	“math”	module	is	used.	This
module	contains	many	mathematical	functions	and	numbers	(such	as	pi)	not	present
in	the	default	Python	libraries,	in	our	case	we	are	using	the	square	root	function
(sqrt).	To	see	more	of	what	is	in	the	math	module,	try	>>>	help(math)	after	importing	
the	math	module.

The	first	if	statement	in	the	code	checks	if	num	is	2	and	if	so,	it	is	obviously	prime	so	
True	is	returned.	The	elif	statement	deals	with	divisibility	by	2,	if	num	is	divisible	by	2
then	it	is	not	prime,	therefore	False	is	returned.	sqrt_num	is	set	to	the	square	toot	of	
num.	To	do	this,	we	call	the	square	root	function	(sqrt)	of	the	math	library	using	the
syntax	math.sqrt(num).	i	is	then	started	at	3	as	we	are	now	checking	the	odd	numbers
only.	The	while	loop	will	keep	going	while	i	<=	sqrt_num	and	will	terminate	when	this
test	becomes	false	(i.e.	when	i	>	sqrt_num).	The	if	statement	checks	divisibility	of	num
with	i	as	before	and	returns	False	if	that	is	the	case.	i	is	then	incremented	by	2,
moving	to	the	next	odd	number.	As	before,	if	the	function	has	not	returned	by	the	end
of	the	while	loop,	then	the	last	line	will	be	executed	returning	True	(i.e.	num	is	prime).

Now	that	we	have	updated	the	function,	we	can	test	it	again.

>>>	is_prime(2)
True
>>>	is_prime(9)
False
>>>	is_prime(19)
True

Thinking	more	about	how	to	test	for	primality	enabled	us	to	write	more	efficient	code.
The	second	version	of	the	is_prime	function	is	more	efficient	as	there	are	fewer
iterations	through	the	while	loop.	This	means	the	code	will	return	an	answer	faster
(especially	for	larger	numbers).	Try	comparing	the	two	functions	with	really	large

numbers	and	see	if	there	is	a	difference.	Although	efficiency	is	very	important	in
software	engineering,	we	leave	more	detailed	and	formal	discussions	of	efficiency	to
later	courses.

The	Next	Prime
The	next	function	to	define	is	next_prime	which	takes	an	num	and	returns	the	next	prime
after	num.	We	will	use	the	same	idea	as	in	the	previous	function	-	i.e.	increment	by
twos.	So	we	will	do	slightly	different	things	depending	on	whether	num	is	odd	or	even.

def	next_prime(num)	:
				"""Returns	the	next	prime	number	after	'num'.

				Parameters:
								num	(int):	Starting	point	for	the	search	for	the	next	prime	number.

				Return:
								int:	The	next	prime	number	that	can	be	found	after	'num'.

				Preconditions:
								num	>	1
				"""
				if	num	%	2	==	0	:
								next_number	=	num	+	1
				else	:
								next_number	=	num	+	2

				#	next_number	is	the	next	odd	number	after	num
				while	not	is_prime(next_number)	:
								next_number	=	next_number	+	2
				return	next_number

Looking	at	the	code	in	detail	–	we	start	with	an	if	statement	that	tests	if	num	is	even.
We	use	the	variable	next_number	to	be	the	next	candidate	for	being	a	prime	and	we
initialise	it	to	be	either	one	or	two	more	than	num,	depending	on	whether	num	is	odd	or
even.	We	have	added	a	comment	to	remind	us	about	this.	The	while	loop	simply
increments	next_number	by	2	until	it	becomes	prime.	Note	that	the	test	in	the	while	loop
is	the	logical	negation	of	the	is_prime	test.	In	other	words,	we	continue	looping	while	
next_number	is	not	a	prime.

Here	are	the	results	of	testing.

>>>	next_prime(3)
5
>>>	next_prime(13)
17
>>>	next_prime(101)
103
>>>	next_prime(2)
3
>>>	next_prime(20)
23

The	nth	Prime

Now	we	bring	it	all	together	by	writing	the	top-level	function	nth_prime	that	returns

the	nth	prime	number.

def	nth_prime(n)	:
				"""Returns	the	n'th	prime	number.

				Parameters:
								n	(int):	The	number	of	prime	numbers	to	find.

				Return:
								int:	The	n'th	prime.

				Preconditions:
								n	>	0
				"""
				next_prime_number	=	2
				i	=	1
				while	i	<	n	:
								#	loop	invariant:	next_prime_number	is	the	i'th	prime
								i	+=	1
								next_prime_number	=	next_prime(next_prime_number)
				return	next_prime_number

In	this	example	we	introduce	the	idea	of	a	loop	invariant.	A	loop	invariant	is	a
property	that,	if	it	is	true	at	the	beginning	of	the	body,	then	it	is	also	true	at	the	end	of
the	loop	body.	So	if	the	code	in	the	body	satisfies	this	property	and	it	is	also	true
initially	(i.e.	when	we	enter	the	while	loop)	then	it	must	be	true	when	we	exit	the	loop.
A	loop	invariant	can	be	useful	in	helping	decide	on	how	variables	should	be	initialised,
how	the	variable	should	change	in	the	body,	and	when	to	exit	the	loop.	It	is	also	helps
document	what	the	loop	does.	So	think	of	the	loop	invariant	and	then	write	the	code!

In	our	example	the	loop	invariant	is	true	initially	(because	2	is	the	first	prime).
Assuming	it	is	true	at	the	start	of	the	loop,	then	the	code	advances	next_prime_number	to
the	next	prime	and	increments	i	and	so	the	loop	invariant	is	true	again	at	the	end	of
the	loop.	Therefore,	it	is	also	true	when	we	terminate.	In	which	case,	not	only	is	the
invariant	true	but	also	i	==	n	and	so	next_prime_number	is	indeed	the	nth	prime.

By	the	way,	i	+=	1	is	a	shorthand	for	i	=	i	+	1.	The	file	prime.py	contains	all	the	code
above	plus	a	top-level	comment	(using	the	triple	quotes	style).	In	fact,	what	we	have
just	done	is	write	our	own	module!	In	the	interpreter	try	import	prime	and	help(prime),
and	see	how	all	the	trouble	we	went	to	writing	comments	pays	off!

King	Arthur:	‘What	does	it	say?’

Maynard:	‘It	reads,	‘Here	may	be	found	the	last	words	of	Joseph	of

Arimathea.	He	who	is	valiant	and	pure	of	spirit	may	find	the	Holy	Grail

in	the	Castle	of	aaarrrrggh’.’

King	Arthur:	‘What?’

Maynard:	‘…The	Castle	of	aaarrrrggh.’

Bedevere:	‘What	is	that?’

Maynard:	‘He	must	have	died	while	carving	it.’

Programming	Style

Code	should	be	written	in	a	style	that	makes	it	easier	to	comprehend.	How	you
structure	and	layout	your	code	is	called	programming	style	and	it	is	a	seemingly
trivial	but	important	part	of	ensuring	your	code	is	easy	to	read.	(This	is	called	making
the	code	‘readable’.)	In	this	course	we	will	following	the	Google	Python	Style	Guide
when	writing	code.	Please	ensure	that	you	read	and	follow	these	rules.	In	the	style
guide	the	first	section,	Python	Language	Rules,	relates	to	how	to	use	particular
language	features.	The	second	section,	Python	Style	Rules,	relates	to	how	to	structure
your	code.	The	style	rules	are	most	immediately	applicable	to	the	code	you	write	in
the	early	stages	of	this	course.	Some	of	the	language	rules	will	become	more
applicable	later	in	the	course.

Commenting
Writing	Comments

Documentation	is	a	software	engineering	concept	that	provides	the	“explanation”	of
the	code.	Comments	should	describe	what	the	code	is	supposed	to	do,	how	to	use	it
properly,	and	anything	else	that	would	be	useful	to	know.	A	comment	is	a	piece	of
syntax	in	a	programming	language	which	lets	us	describe	the	program	code.	We	can
add	comments	without	affecting	what	our	code	actually	does.	Programming
languages	do	this	to	give	us	a	way	of	easily	documenting	our	code.

Documenting	code	is	very	important	—	it	aids	communication	between	developers
and	is	a	great	help	when	it	comes	to	maintenance!	Just	as	an	agreed	upon	layout	style
is	critical,	the	same	holds	for	commenting	style.	In	Python	there	are	two	types	of
comments,	each	serving	a	different	purpose.

The	first	style	of	comment	uses	the	#	character	followed	by	the	comment	until	the	end
of	the	line.	These	comments	are	useful	for	describing	complicated	lines	of	code,	or	as
a	reminder	for	what	a	particular	line	of	code	is	used	for.	These	lines	are	ignored	by
the	Python	interpreter	and	are	mainly	notes	to	the	writer	of	the	code.

The	second,	more	important	style	of	comments,	are	called	triple-quote	comments	or
docstrings.	These	are	written	using	triple	quotes	(three	quote	marks:	""").	Docstrings
are	meant	to	explain	what	use	a	function	serves,	without	going	into	the	details	of
“how	it	does	what	it	does”.	In	Python,	docstrings,	are	composed	of	two	important
parts.	The	first	is	a	brief	explanation	of	what	the	function	does.	This	is	followed	by	a
detailed	explanation	of	how	to	use	the	function.	This	detailed	explanation	should
include	a	description	of	the	parameters;	any	preconditions,	which	are	any
requirements	that	need	to	be	met	before	the	function	is	called	in	order	for	the
function	to	perform	correctly;	a	description	of	what	the	function	returns;	and	possibly
some	examples	of	usage.	We	can	think	of	these	comments	as	a	kind	of	contract
between	the	writer	and	user	of	the	function.	The	writer	is	promising	that,	if	the	user
calls	the	function	with	arguments	of	the	correct	type	that	satisfy	the	precondition	(if
there	is	one),	the	function	will	behave	as	described	in	the	comment.	If	the	user	calls
the	function	with	arguments	of	the	wrong	type,	or	that	do	not	satisfy	the	precondition,
the	writer	is	not	responsible	for	the	function’s	behaviour.

Function	Docstrings
Below	is	our	discuss	function	updated	with	some	helpful	comments,	which	is	in	the	
interaction.py	file.

def	discuss(topic)	:
				"""Discuss	a	topic	with	the	user	and	return	their	response.

				Ask	if	the	user	likes	the	topic	and	why.

https://google.github.io/styleguide/pyguide.html

				Parameters:
								topic	(str):	The	topic	under	discussion.

				Return:
								str:	Response	to	the	question	of	why	they	like	the	topic.
				"""
				like	=	input("Do	you	like	"	+	topic	+	"?	")
				response	=	input("Why	do	you	think	that?	")
				return	response

In	this	course,	we	will	use	the	following	triple	quote	commenting	style.

The	opening	triple	quote	should	be	the	first	line	of	the	body,	indented	as	part	of	the
body.	The	first	line	should	give	a	short	summary	of	the	function’s	behaviour.	If
necessary,	this	line	is	followed	by	a	blank	line,	and	then	by	a	more	detailed
explanation	of	the	function’s	behaviour.	This	is	followed	by	a	blank	line	followed	by	a
description	of	each	parameter.	The	parameter	description	should	indicate	the	type
the	function	expects	for	that	parameter,	the	type	is	in	parenthesis	after	the	function
name,	and	then	should	provide	a	description	of	what	the	function	expects	to	be
passed	to	that	parameter.	If	the	function	does	not	have	any	parameters	this	section	is
omitted.	Following	the	parameter	description	is	another	blank	line	and	then	a
description	of	what	the	function	returns.	The	return	description	should	indicate	the
type	of	value	being	returned	and	then	describe	what	is	being	returned.	In	this	case,
the	discuss	function	has	one	parameter	topic	of	type	str	(short	for	“string”)	that	is	the
topic	used	for	the	discussion	in	the	function’s	body.	The	function	returns	a	str	that	is
the	response	to	the	question	of	why	the	user	likes	the	topic	or	not.	We	can	also	add	a
precondition	to	the	comments.	Preconditions	state	what	must	be	done	(be	logically
true)	before	the	function	is	called.	Often	this	is	a	constraint	on	the	values	of	some
parameters,	over	and	above	the	type	constraint.	(i.e.	The	code	calling	the	function
must	ensure	that	the	value	of	the	parameters	meets	the	precondition	constraints.)
The	precondition	may	also	be	something	that	needs	to	be	done	before	the	function	is
called	(e.g.	some	other	function	must	be	called	before	this	function	is	called).	The
prime	numbers	example	below	shows	a	function	with	preconditions.	Examples	of
usage	demonstrate	what	the	caller	can	expect	when	the	use	the	function.	These
examples	serve	two	purposes.	Firstly,	they	demonstrate	what	result	will	be	returned
with	particular	parameters.	This	is	useful	for	functions	with	complex	logic.	Secondly,
the	example	of	usage	provides	test	cases,	as	the	function	can	be	executed	and	the
results	checked	against	the	results	indicated	in	the	example	of	usage.	The	examples
of	usage	should	be	formatted	to	look	like	an	interactive	Python	session	in	the
interpreter.	This	allows	the	Python	doctest	tool	to	automatically	test	the	function	to
ensure	it	produces	the	expected	results.	(Note:	Initially	do	not	worry	about
understanding	how	to	use	doctest	or	getting	the	examples	of	usage	perfectly
formatted.	It	is	more	important	to	get	the	idea	of	writing	comments	that	help	other
programmers,	than	it	is	to	worry	about	understanding	automatic	testing.	Automated
testing	concepts	will	be	explored	in	detail	in	later	courses.)	At	the	end	is	a	line
containing	the	terminating	triple	quotes.

def	is_prime(num)	:
				"""Returns	True	iff	'num'	is	prime.

				Parameters:
								num	(int):	Integer	value	to	be	tested	to	see	if	it	is	prime.

				Return:
								bool:	True	if	'num'	is	prime.	False	otherwise.

				Preconditions:
								num	>	1

				Examples:

https://docs.python.org/3.6/library/doctest.html

								>>>	is_prime(2)
								True
								>>>	is_prime(3)
								True
								>>>	is_prime(4)
								False
								>>>	is_prime(5)
								True
								>>>	is_prime(9)
								False
				"""

The	#	style	comments	are	completely	ignored	by	the	interpreter.	On	the	other	hand
the	triple	quotes	comments	become	part	of	the	function.	If	you	load	interaction.py	into
the	interpreter	and	then	start	typing	a	function	call,	you	will	see	that	the	first	line	of
the	comment	appears	in	the	little	pop-up	window,	as	shown	below.

Further,	some	python	tools,	like	pydoc,	extract	this	documentation	to,	for	example,
generate	documentation.	Also,	below	is	an	example	using	the	help	function	which
displays	the	docstring	comments	of	the	function.

>>>	help(discuss)
Help	on	function	discuss	in	module	__main__:

discuss(topic)
				Discuss	a	topic	with	the	user	and	return	their	response.
				
				Ask	if	the	user	likes	the	topic	and	why.
				
				Parameters:
								topic	(str):	The	topic	under	discussion.

				Return:
								str:	Response	to	the	question	of	why	they	like	the	topic.

>>>	

Classes	and	Methods	Docstrings
Commenting	classes	and	their	methods	is	slightly	different	to	commenting	functions.
The	class	itself	requires	a	comment	describing	what	the	class	does.	Again	not
explaining	how	it	does	it.	The	methods	are	commented	similarly	to	functions	but	with
a	slight	difference	to	the	type	declaration.	The	other	difference	is	that	the	__init__
method	of	the	class	has	a	Constructor	in	place	of	the	type	declaration.	Below	is	the
Point	class	from	the	Class	Design	notes.

class	Point(object)	:
				"""A	2D	point	ADT	using	Cartesian	coordinates."""

				def	__init__(self,	x,	y)	:
								"""Construct	a	point	object	based	on	(x,	y)	coordinates.
								
								Parameters:
												x	(float):	x	coordinate	in	a	2D	cartesian	grid.
												y	(float):	y	coordinate	in	a	2D	cartesian	grid.

								"""
								self._x	=	x
								self._y	=	y

				def	x(self)	:
								"""(float)	Return	the	x	coordinate	of	the	point."""
								return	self._x

				def	y(self)	:
								"""(float)	Return	the	y	coordinate	of	the	point."""
								return	self._y

				def	move(self,	dx,	dy)	:
								"""Move	the	point	by	(dx,	dy).

								Parameters:
												dx	(float):	Amount	to	move	in	the	x	direction.
												dy	(float):	Amount	to	move	in	the	y	direction.
								"""
								self._x	+=	dx
								self._y	+=	dy

Note	that	the	comment	for	the	__init__	method	does	not	have	a	Return:	comment.
This	is	due	to	a	class	constructor	not	returning	a	value,	it	creates	an	object	of	the
class	type	instead	of	returning	a	value.

Also	notice	that	the	self	parameter	is	never	described	in	the	Parameters:	comment.
Every	method	that	operates	on	an	object	must	have	a	self	parameter,	and	it	refers	to
the	object	on	which	the	method	operates.	Consequently	its	type	and	value	are	always
known.	When	calling	a	method	on	an	object	you	do	not	pass	the	object	as	a
parameter,	it	is	implicitly	passed	as	part	of	the	method	call.	The	move	method	of	Point,
would	be	called	like:	point_object.move(1.0,	2.5).	In	this	case	the	self	parameter	refers
to	the	point_object.

Useful	stuff,	string,	no	trouble	there

Data	Structures
Sequences
A	sequence	can	be	thought	of	as	an	ordered	collection	of	data	–	i.e.	it	has	a	0th

element,	a	first	element,	a	second	element	and	so	on.

Note	that	Python,	and	many	other	programming	languages,	start	counting
from	0	rather	than	1.

A	typical	operation	on	any	kind	of	a	sequence	is	to	be	able	to	access	the	ith	element.
Another	operation	is	to	determine	how	many	elements	there	are	in	the	sequence.	This
also	leads	to	the	ability	to	walk	through	the	sequence	from	start	to	end.	This	is	known
as	iterating	through	the	sequence.	All	sequence-based	objects	that	have	this
capability	are	known	as	iterables.	A	string	can	be	considered	as	a	specialisation	of	a
sequence	as	it	represents	a	series	of	ordered	characters.	We	will	use	strings	as	our
first	example	of	using	ADTs.

Strings
As	we	have	seen	before	a	string	can	be	made	using	the	quotation	marks.	Python
interprets	anything	held	within	a	pair	of	“”	to	be	a	string.	This	can	be	thought	of	as

the	constructor	of	a	string.

Because	strings	are	specialisations	of	sequences,	then	we	expect	to	be	able	to	get	the
ith	character	of	a	string	and	find	out	how	long	a	string	is.	To	be	able	to	access	the
characters	in	a	string	it	is	possible	to	do	what	is	called	indexing.	This	is	done	using	[
]	notation	–	this	is	the	accessor.	To	be	able	to	find	the	length	of	a	string	we	have	the	
len	function.

Note	that	there	are	other	operations	we	want	to	perform	on	strings	that	may	not
make	sense	for	other	specialisations	of	sequences.

Here	are	some	examples	of	indexing	and	finding	the	of	length	strings	in	action:

>>>	s	=	"spam"
>>>	len(s)
4
>>>	s[0]
's'
>>>	s[3]
'm'
>>>	s[4]
Traceback	(most	recent	call	last):
		File	"<pyshell#32>",	line	1,	in	<module>
				s[4]
IndexError:	string	index	out	of	range
>>>	s[-1]
'm'
>>>	s[-2]
'a'
>>>	i	=	0
>>>	while	i	<	len(s)	:
								print(s[i])
								i	+=	1

s
p
a
m

Note	the	'string	index	out	of	range'	error	in	the	fourth	example	–	there	is	no	fourth
element	as	Python	starts	counting	at	0.	Also	notice	that	negative	numbers	can	be
used	in	indexing.	The	use	of	negative	numbers	starts	the	indexing	at	the	end	of	the
string.	So	-1	refers	to	the	last	element	in	the	string,	-2	refers	to	the	second	last,	and
so	on.	In	the	last	example	we	use	a	while	loop	to	iterate	over	and	print	every
character	in	the	string.	Remember	i	+=	1	is	the	same	as	i	=	i	+	1.	In	Python,	there	is
no	separate	‘character	type’.	Characters	in	Python	are	represented	as	strings	of
length	1.	We	will	use	the	term	‘character’	to	mean	a	string	of	length	1.	Strings	are
immutable	sequences	–	i.e.	it	is	not	possible	to	change	the	data	in	a	string.	We	will
cover	mutable	and	immutable	objects	and	sequences	in	the	following	weeks’	notes.

len	Syntax

<div	class="language-python	highlighter-rouge"><div	class="highlight"><pre	
class="highlight"><code>len(
sequence)	</code></pre></div>				
</div>

Semantics

Returns	the	length	of	(number	of	objects	in)	the	sequence.

For
In	the	example	above,	a	while	loop	was	used	to	iterate	over	the	characters	of	a	string.
Iterating	over	the	elements	of	a	sequence	is	such	a	common	thing	to	do	that	Python
has	a	special	construct	for	this	purpose	–	the	for	loop.	Instead	of	using	the	while	loop
as	we	did	earlier	we	could	use	a	for	loop	instead,	as	a	string	is	an	iterable	object.

>>>	s	=	"spam"
>>>	for	i	in	s	:
								print(i)

s
p
a
m

Syntax

<div	class="language-python	highlighter-rouge"><div	class="highlight"><pre	
class="highlight"><code>for	var	
in	sequence	:

body	</code></pre></div>				</div>

where	var	is	a	variable	and	sequence	is	a	sequence.

Semantics

Iterate	over	sequence	assigning	var	in	turn	to	each	element	of	the	sequence.
For	each	element,	execute	body.	The	body	typically	contains	occurrences	of	var.
The	body	must	follow	the	indentation	rules	of	Python	that	we	have	seen	before.

As	a	simple	example	of	the	use	of	a	for	loop	we	now	write	a	function	to	determine	if	a
given	character	is	in	a	string.	Here	is	the	definition:

def	is_in(char,	string)	:
				"""Return	True	iff	'char'	is	in	'string'.

				Parameters:
								char	(string):	The	character	being	searched	for.
								string	(string):	The	string	being	searched.

				Return:

								bool:	True	if	'char'	is	in	'string'.	False	otherwise.
				"""
				for	c	in	string	:
								if	c	==	char	:
												return	True
				return	False

Here	is	an	example	of	is_in:

>>>	spam	=	"spam"
>>>	is_in("s",	spam)
True
>>>	is_in("d",	spam)
False

The	for	loop	iterates	over	the	characters	in	the	string,	comparing	each	in	turn	with
the	supplied	character.	If	a	match	is	found,	True	is	returned.	If	we	iterate	through	all
the	elements	without	finding	a	match,	then	the	for	loop	terminates	and	the	following
command	is	executed	–	returning	False.	Determining	if	a	particular	item	is	an	element
of	a	sequence	is	a	common	operation,	and	so	Python	has	a	built-in	operator	in	that
does	the	job	for	us	–	so	we	don’t	need	the	previous	function.	Actually,	for	strings,	in
does	more	than	the	previous	function	as	we	can	see	in	the	following	examples.

>>>	's'	in	'spam'
True
>>>	'x'	in	'spam'
False
>>>	'sp'	in	'spam'
True
>>>	'sa'	in	'spam'
False
>>>	'pa'	in	'spam'
True

Note	how	the	in	keyword	is	used	in	for	loops	as	well	as	boolean	tests.	It’s	important
to	be	aware	of	both	uses	of	in	and	how	to	use	it	in	both	cases.

Slice	It	Up
Earlier	we	saw	how	we	can	access	the	ith	element	using	square	brackets.	We	can	do
more!	We	can	also	use	the	square	brackets	to	do	slicing	–	i.e.	extracting
subsequences.	Here	are	some	examples.

>>>	s	=	'spam'
>>>	s[1:2]
'p'
>>>	s[1:3]
'pa'
>>>	s[:3]
'spa'
>>>	s[1:]
'pam'
>>>	s[:-2]
'sp'

>>>	s[-3:]
'pam'
>>>	s[:]
'spam'

The	idea	is	to	supply	two	indices	separated	by	a	colon.	So	when	we	write	s[n:m],	we
mean	the	substring	from	the	nth	index	up	to,	but	not	including,	the	mth	index.	If	the
first	index	is	missing	we	get	the	slice	starting	at	the	beginning	of	the	string	or
sequence.	If	the	second	index	is	missing	we	get	the	slice	ending	at	the	last	element.
In	the	last	case	we	actually	generate	a	copy	of	the	original	string.	We	can	also	write	
s[n:m:k].	This	means	the	substring	from	n	to	m	in	steps	of	k.	Here	are	some	examples.

>>>	sp	=	'Lovely	Spam'
>>>	sp[1:10:2]
'oeySa'
>>>	sp[0:8:3]
'Le	'
>>>	sp[-10:2:2]
'o'
>>>	sp[-10:10:3]
'olS'
>>>	sp[:7:4]
'Ll'
>>>	sp[2::3]
'vyp'
>>>	sp[::3]
'Le	a'
>>>	sp[10:1:-2]
'mp	lv'
>>>	sp[-3:2:-3]
'py'
>>>	sp[::-1]
'mapS	ylevoL'

The	first	four	examples	show	starting	from	one	index	and	ending	at	another	using	a
step	size.	The	next	three	examples	show	ways	of	starting	at	the	beginning	or	ending
at	the	end	or	both	using	a	step	size.	The	last	three	are	examples	of	using	negative
step	sizes.

Slicing	Syntax

sequence[n:m:k]

Semantics

Returns	the	elements	in	the	sequence	from	n	up	to	but	not	including	m	in	steps
of	size	k.	If	k	is	not	included	then	step	size	defaults	to	1.	To	get	a	backwards
segment	of	the	sequence	then	m	<	n	and	k	must	be	negative.

To	finish	off	this	section	we	look	at	two	programming	problems	involving	lists.	The
first	problem	is,	given	a	character	and	a	string,	find	the	index	of	the	first	occurrence
of	the	character	in	the	string.

def	find(char,	string)	:
				"""Return	the	first	i	such	that	string[i]	==	'char'

				Parameters:
								char	(string):	The	character	being	searched	for.
								string	(string):	The	string	being	searched.

				Return:
								int:	Index	position	of	'char'	in	'string',	
													or	-1	if	'char'	does	not	occur	in	'string'.
				"""
				i	=	0
				length	=	len(string)
				while	i	<	length	:
								if	char	==	string[i]	:
												return	i
								i	+=	1
				return	-1

We	use	a	while	loop	to	iterate	over	the	elements	of	the	string.	Either	we	find	an
occurrence	of	the	character	—	in	which	case	we	immediately	return	that	index,	or	we
get	to	the	end	of	the	string	without	finding	the	character	and	return	-1.	Here	are
some	tests	of	find.

>>>	s	=	"spam"
>>>	find('m',	s)
3
>>>	find('s',	s)
0
>>>	find('x',	s)
-1

Tuples
A	tuple	is	a	comma	separated	list	of	values.	Tuples	are	useful	for	storing	data	that	is
required	to	not	be	modified.	As	tuples	are	immutable,	they	cannot	be	modified,
they	are	useful	for	this	type	of	operation.

Here	are	some	examples	using	tuples.

>>>	type((2,3,4))
<class	'tuple'>
>>>	point	=	(2,3)
>>>	point
(2,	3)
>>>	x,	y	=	point
>>>	print(x,	y)
2	3
>>>	x,	y	=	y,	x
>>>	print(x,	y)
3	2

The	second	example	assigns	a	tuple	to	the	variable	point.	This	tuple	represents	an	x,	y
coordinate,	one	of	the	more	common	uses	of	tuples.	(Formally,	we	say	that	the	name	
point	refers	to	the	tuple	(2,3)	in	memory.)	The	third	is	an	example	of	tuple
unpacking,	also	called	parallel	assignment	—	it	assigns	x	and	y	respectively	the

values	of	the	first	and	second	components	of	the	tuple.	The	last	example	uses	parallel
assignment	to	swap	the	values	of	two	variables.

Tuples	can	also	be	indexed	and	sliced	in	the	same	way	as	strings.	Here	is	an	example.
The	tuple	in	this	example	represents	a	person’s	details.	Using	a	tuple	is	an	easy	way
of	storing	multiple	values	together	to	represent	the	information	of	a	person.

>>>	john	=	("John",	"Cleese",	"Ministry	of	Silly	Walks",	5555421,	"27/10")
>>>	john[2]
'Ministry	of	Silly	Walks'
>>>	john[4]
'27/10'
>>>	john[:2]
('John',	'Cleese')

Multiple	Outputs

Tuples	are	also	useful	for	using	multiple	values,	for	example	in	for	loops	and	return
statements.	It	is	possible	to	rewrite	the	find	function	using	a	for	loop	and	the	enumerate
function.	Calling	enumerate	on	a	sequence	will	create	a	sequence	of	tuples	containing	a
counter	and	the	values	in	the	sequence.	By	default,	the	counter	starts	at	0,	so	it	can
be	used	to	generate	tuples	that	contain	a	value	of	the	sequence	and	the	index	of	that
value.	The	following	is	a	couple	of	examples	using	enumerate.

>>>	s	=	"I	like	Spam"
>>>	for	i,	c	in	enumerate(s)	:
				print(i,	c)

0	I
1		
2	l
3	i
4	k
5	e
6		
7	S
8	p
9	a
10	m
>>>	
>>>	
>>>	for	i,	c	in	enumerate(s,	3)	:
				print('number:',	i,	'character:',	c)

number:	3	character:	I
number:	4	character:		
number:	5	character:	l
number:	6	character:	i
number:	7	character:	k
number:	8	character:	e
number:	9	character:		
number:	10	character:	S
number:	11	character:	p
number:	12	character:	a
number:	13	character:	m

Notice	that	the	for	loop	uses	tuple	unpacking,	by	assigning	the	items	of	the	tuple	to
the	variables	i	and	c.	The	first	example	simply	prints	out	the	index	and	character	as	a

tuple	pair.	The	second	gives	a	second	argument	to	enumerate,	which	is	the	starting
value	for	the	counter.

enumerate	Syntax

Either	of	these	forms	can	be	used:

<div	class="language-python	highlighter-rouge"><div	class="highlight"><pre	
class="highlight"><code>enumerate
(sequence)	<span	
class="nb">enumerate(<span	
class="n">sequence,	<span	
class="n">start)	</code></pre></div>				</div>

Semantics

Generates	a	sequence	of	(count,	value)	tuples,	with	an	increasing	count	and	the
values	of	the	sequence.	The	count	starts	at	start,	or	at	0	if	start	is	not	given.
More	precisely,	the	following	sequence	is	generated:

<div	class="language-python	highlighter-rouge"><div	class="highlight"><pre	
class="highlight"><code>enumerate
(seq)	<span	
class="o">=>	(0<span	
class="p">,	seq[<span	
class="mi">0]),	(<span	
class="mi">1,	seq<span	
class="p">[1]),	<span	
class="p">(2,	<span	
class="n">seq[2<span	
class="p">]),	...	<span	
class="nb">enumerate(seq
,	start)	
=>	(<span	
class="n">start,	seq
[0]),	
(start+
1,	seq
[1]),	
																					(start
+2,	
seq[2
]),	...	</code></pre></div>				
</div>

If	the	counter	starts	from	0,	then	the	count	is	the	same	as	the	index	of	the	value
in	the	sequence.	This	is	the	most	common	use	of	enumerate.

Now	we	can	rewrite	find	as	below:

def	find(char,	string)	:
				"""Return	the	first	i	such	that	string[i]	==	char

				Parameters:
								char	(string):	The	character	being	searched	for.
								string	(string):	The	string	being	searched.

				Return:
								int:	Index	position	of	'char'	in	'string',	
													or	-1	if	'char'	does	not	occur	in	'string'.
				"""
				for	i,	c	in	enumerate(string)	:
								if	c	==	char	:
												return	i
				return	-1

This	function	now	goes	through	each	character	in	the	string	using	a	for	loop	with
enumerate.	The	body	of	the	for	loop	is	to	check	if	the	current	character,	c,	is	the	same
as	char.	If	it	is	then	the	current	index	i	is	returned.	Otherwise	the	for	loop	moves	onto
the	next	character	in	the	string.	If	the	for	loop	ends	then	-1	is	returned.	Performing
test	cases	on	find.py	we	can	see	that	it	has	the	same	functionality	as	before.

>>>	s	=	"spam"
>>>	find('m',	s)
3
>>>	find('s',	s)
0
>>>	find('x',	s)
-1

Returning	a	Tuple

Now	we	are	going	to	write	our	own	function	that	returns	multiple	outputs.	Our
function	is	going	to	take	a	character	and	a	string	and	split	the	string	in	two,	at	the
first	occurrence	of	the	character.	In	this	case	we	want	to	write	a	function	that	will
return	three	strings	-	the	string	up	to	(but	not	including)	the	character;	the	character;
and	the	string	after	the	character.

Our	programming	problem	can	be	solved	by	using	find	in	combination	with	slicing.

def	partition(char,	string)	:
				"""Return	'string'	split	at	'char'.

				The	returned	result	is	a	tuple	consisting	of	three	strings	that
				partition	'string'	at	'char'	-	i.e.	the	substring	before	the	first	occurrence
				of	'char',	'char',	and	the	substring	after	the	first	occurrence	of	'char'.
				If	'char'	does	not	occur	in	'string'	then	the	first	component	returned
				is	the	entire	'string'	and	the	last	two	components	are	empty	strings.

				Parameters:
								char	(string):	The	character	used	to	partition	string.
								string	(string):	The	string	being	partitioned.

				Return:
								tuple<tr,	str,	str>:	sub-string	before	char,	char,	sub-string	after	char;
																													or	'string',	"",	"".
				"""
				index	=	find(char,	string)
				if	index	==	-1	:
								return	string,	'',	''
				else	:

								return	string[:index],	char,	string[index+1:]

Here	are	some	tests	of	partition.

>>>	spam	=	'spam'
>>>	partition('s',	spam)
('',	's',	'pam')
>>>	partition('p',	spam)
('s',	'p',	'am')
>>>	partition('m',	spam)
('spa',	'm',	'')
>>>	partition('x',	spam)
('spam',	'',	'')

In	next	week’s	notes	we	will	see	that	the	find	and	partition	functions,	like	the	is_in
function	are	already	part	of	Python	as	part	of	the	string	ADT	interface.

I’m	afraid	I’m	not	personally	qualified	to	confuse	cats,

but	I	can	recommend	an	extremely	good	service.

Mutable	and	Immutable
As	we	are	about	to	see	lists,	are	our	first	example	of	a	mutable	sequence	and	object,
now	is	a	good	time	to	discuss	mutability.	Mutability	is	the	description	of	whether	an
object’s	data	can	be	modified.

A	mutable	object	is	an	object	whose	data	is	modifiable.	The	data	can	be	modified
either	through	the	methods	of	the	object	or	through	direct	access	to	the	data	itself.
An	immutable	object	is	an	object	where	the	data	cannot	be	modified	in	anyway.
Strings	are	examples	of	immutable	objects.	It	is	not	possible	to	modify	the	data	of	a
string.	We	are	about	to	meet	our	first	mutable	objects:	lists.

Lists

Lists	are	mutable	sequences.	We	can	access	elements	at	a	particular	index	as	we	did
with	strings	and	use	slicing,	but	we	can	also	modify	a	list	by	changing	elements	or	by
adding	and	removing	elements.

Here	are	some	examples	of	lists	in	action:

>>>	a	=	[1,2,3,4]
>>>	type(a)
<class	'list'>
>>>	a[0]
1
>>>	a[-1]
4
>>>	a[1:3]
[2,	3]
>>>	a[::2]
[1,	3]
>>>	a[0]	=	5
>>>	a
[5,	2,	3,	4]
>>>	a.append(7)

>>>	a
[5,	2,	3,	4,	7]
>>>	a.pop(3)
4
>>>	a
[5,	2,	3,	7]
>>>	a.insert(1,9)
>>>	a
[5,	9,	2,	3,	7]
>>>	a.sort()
>>>	a
[2,	3,	5,	7,	9]
>>>

The	first	example	shows	the	syntax	for	lists	and	the	type,	the	next	four	examples	look
up	information	in	the	list	using	indexing	and	slicing.	In	the	next	example,	we	see
indexing	used	on	the	left	hand	side	of	an	assignment	statement.	The	semantics	is	that
the	value	stored	at	the	supplied	index	is	updated	with	the	value	on	the	right	hand	side
of	the	assignment.	The	last	four	examples	use	methods	of	the	list	class	to	perform
more	operations	on	the	list.

The	first	of	these	is	the	append	method.	The	append	method	adds	the	item	that	is	the
argument	to	the	end	of	the	list.	This	is	followed	by	the	pop	method.	Pop	removes	the
item	at	the	given	index	from	the	list	and	returns	that	item.	Another	way	to	add	items
to	the	list	is	the	insert	method.	Insert	takes	an	index	and	an	item	as	arguments	and
inserts	the	item	at	the	given	index,	pushing	the	other	items	down	the	list.	The	last
example	shows	how	we	can	sort	the	elements	—	arrange	them	in	order.

Notice	how	all	the	methods	and	operations	performed	on	the	list	modify	the	list	stored
in	the	variable	being	used	and	most	do	not	return	anything.	Compare	this	to	strings,
where	all	methods	and	operations	return	a	new	item	and	do	not	change	the	original
string	in	the	variable.

Python	also	includes	a	function	for	converting	any	sequence	into	a	list	of	the	objects
in	that	sequence.

>>>	list("spam")
['s',	'p',	'a',	'm']
>>>	list((1,	7,	8,	42))
[1,	7,	8,	42]

Because	lists	are	sequences	we	can	iterate	over	a	list	using	a	for	loop.

>>>	for	i	in	[0,	1,	2,	3,	4]	:
				print(i)

0
1
2
3
4

A	for	loop	is	not	much	good	if	we	do	not	do	anything	with	the	items.	Here	is	an
example	of	taking	a	list	of	numbers	and	generating	a	new	list	with	all	the	numbers
from	the	original	list	squared.

>>>	x	=	[2,	5,	8,	14,	18]
>>>	y	=	[]
>>>	for	i	in	x	:
				y.append(i	**	2)

>>>	y
[4,	25,	64,	196,	324]

Range

Because	iterating	over	sequences	of	numbers	is	very	common,	Python	comes	with	a
function	for	generating	a	sequence	of	numbers.	This	function	is	called	range.	range
generates	a	special	object	that	is	iterable,	meaning	we	can	loop	over	the	elements	in
the	range	using	the	for	loop.

>>>	for	i	in	range(10)	:
				print(i,	end="	")

0	1	2	3	4	5	6	7	8	9	

In	short,	range	creates	an	object	that	can	be	looped	through	that	contains	a	sequence
of	numbers	from	a	start	number	up	to	but	not	including	a	given	end	number.	The	end
number	is	required	and	is	excluded	from	the	sequence	as	usually	we	use	range	to
generate	indices.	The	default	start	number	is	zero;	this	is	also	for	generating	indices
as	indexing	starts	at	zero.	The	step	size	can	also	be	changed,	enabling	us	to	skip
numbers	instead	of	going	one	number	at	a	time.	This	can	be	seen	in	the	following
examples.	Note,	to	simplify	these	examples	the	list	function	has	been	used.

>>>	list(range(5))
[0,	1,	2,	3,	4]
>>>	list(range(1,	10))
[1,	2,	3,	4,	5,	6,	7,	8,	9]
>>>	list(range(1,	10,	3))
[1,	4,	7]
>>>	list(range(10,	1	,-1))
[10,	9,	8,	7,	6,	5,	4,	3,	2]
>>>

range	Syntax

range(start,	end,	step_size)	

start	is	optional	and	defaults	to	0,	step_size	is	optional	and	defaults	to	1

Semantics

Generates	an	iterable	sequence	of	numbers.	If	only	end	is	given,	then	the
sequence	will	start	at	0	go	up	to	but	not	including	end.	If	start	and	end	are	given,
then	the	sequence	will	start	at	start	and	go	up	to	but	not	including	end.	If	all
three	options	are	given	then	the	sequence	will	start	at	start	and	go	up	to	but
not	including	end	with	a	given	step_size.

Pass	by	Reference

The	following	example	is	of	a	function	that	takes	a	list	and	a	number	and	adds	all
numbers	from	0	up	to	but	not	including	that	number	to	the	list.

def	add_to(existing_list,	num)	:
				"""Adds	numbers	0	to	'num'	to	the	end	of	'list'
				Parameters:
								existing_list	(list):	The	list	to	which	numbers	will	be	added.
								num	(int):	The	number	up	to	which	will	be	added	to	'existing_list'.
				Examples:
								>>>	a_list	=	[]
								>>>	add_to(a_list,	4)
								>>>	a_list
								[0,	1,	2,	3]
				"""
				for	i	in	range(num)	:
								existing_list.append(i)

After	saving	the	file	as	add_to.py	and	running	here	is	a	test.

>>>	a_list	=	[3,	5,	6,	87,	1,	5]
>>>	add_to(a_list,	5)
>>>	a_list
[3,	5,	6,	87,	1,	5,	0,	1,	2,	3,	4]

Notice	how	even	though	the	function	does	not	return	anything	the	list	is	modified
simply	by	passing	it	to	the	function.	We	say	that	objects	in	Python	are	passed	by
reference,	which	means	that	objects	passed	into	functions	are	passed	directly.
Consequently,	a	mutable	object,	which	is	changed	inside	a	function	body,	will	still	be
changed	after	the	function	call.	In	contrast,	some	programming	languages	use	a	pass
by	value	strategy,	where	a	copy	of	the	object	is	passed	into	functions,	so	any
modifications	will	not	affect	the	original	object.	The	add_to	function	is	what	is	often
called	a	procedure,	rather	than	a	function,	because	it	does	not	return	a	value.	In
Python,	functions	or	procedures	always	return	a	value,	even	if	there	is	no	return
statement.	Procedures,	like	this	example,	return	None	if	there	is	no	return	line.	None	is
an	instance	of	a	special	type	in	Python	called	NoneType	which	has	only	one	value,	None.

>>>	type(None)
<class	'NoneType'>
>>>	a	=	None
>>>	a
>>>	
>>>	help(None)
Help	on	NoneType	object:

class	NoneType(object)
	|		Methods	defined	here:
	|		
	|		__bool__(self,	/)
	|						self	!=	0
	|		
	|		__new__(*args,	**kwargs)	from	builtins.type
	|						Create	and	return	a	new	object.		See	help(type)	for	accurate	signature.

	|		
	|		__repr__(self,	/)
	|						Return	repr(self).

None	is	treated	specially	by	the	interpreter.	The	second	example	shows	that	anything
that	evaluates	to	None	is	not	printed	to	the	interpreter.

Pass	by	Reference

If	a	list	is	passed	into	a	function,	any	changes	made	to	that	list	inside	the
function	will	affect	the	list	outside	of	the	function,	because	lists	are	mutable.

Word	association	football

Dictionaries
A	dictionary	is	similar	to	a	sequence,	as	it	can	be	indexed.	The	difference	is	that,
instead	of	being	indexed	by	0,	1,	2,	etc.;	it	is	indexed	by	keys.	(Dictionaries	cannot	be
sliced.)	A	dictionary	is	really	a	mapping	from	keys	to	values.	Dictionary	keys	can
be	any	immutable	type	—	for	example	strings	or	numbers,	while	values	can	be	of
any	type.	Dictionaries	are	used	for	storing	and	retrieving	information	based	on	a	key.
For	this	reason,	there	can	be	no	duplicates	in	the	keys,	but	there	can	be	duplicates	in
the	values.

Here	are	some	examples	of	dictionaries	in	action	using	a	phone	book	as	an	example.

>>>	phone	=	{'Eric'	:	7724,	'John'	:	9224,	'Graham'	:	8462}
>>>	phone
{'John':	9224,	'Graham':	8462,	'Eric':	7724}
>>>	type(phone)
<class	'dict'>
>>>	phone['John']
9224
>>>	phone['Terry']

Traceback	(most	recent	call	last):
		File	"<pyshell#4>",	line	1,	in	<module>
				phone['Terry']
KeyError:	'Terry'
>>>	phone['Terry']	=	6352
>>>	phone['Terry']
6352
>>>	phone
{'John':	9224,	'Graham':	8462,	'Eric':	7724,	'Terry':	6352}

The	first	example	shows	one	way	of	constructing	a	dictionary	—	an	open	brace	(curly
bracket)	followed	by	a	sequence	of	key	:	value	pairs	followed	by	a	closed	brace.
Notice	how	when	the	dictionary	is	printed,	it	is	not	in	the	same	order	that	it	was
created	in.	This	is	due	to	the	way	dictionaries	are	stored	in	memory.	They	are	not
necessarily	stored	in	any	particular	order.	The	third	example	shows	accessing	the
dictionary	using	the	square	bracket	notation.	The	next	example	shows	that,	using	the
square	bracket	notation,	if	a	key	is	not	in	the	dictionary	it	will	raise	an	error.
However,	if	a	key	is	not	in	the	dictionary	it	can	be	added	(or	if	the	key	is	in	the

dictionary	then	its	value	is	updated)	using	the	square	bracket	notation	as	shown	in
the	last	example.

The	next	couple	of	examples	show	other	methods	of	creating	a	dictionary.

>>>	phone	=	dict(Eric=7724,	John=9224,	Graham=8462)
>>>	phone
{'John':	9224,	'Graham':	8462,	'Eric':	7724}
>>>	phone	=	dict([('Eric',	7724),	('John',	9224),	('Graham',	8462)])
>>>	phone
{'John':	9224,	'Graham':	8462,	'Eric':	7724}

The	first	example	shows	that	a	dictionary	can	be	created	using	the	dict	function	with
a	sequence	of	key=value	pairs	as	arguments.	The	second	example	shows	that	the	dict
function	can	also	be	used	with	a	single	sequence	of	(key,	value)	pairs	as	an	argument.

The	next	few	examples	show	a	few	methods	of	dictionaries	as	well	as	a	few	examples
of	for	loops	on	dictionaries.

>>>	for	key	in	phone	:
				print(key,	phone[key])

John	9224
Graham	8462
Eric	7724
>>>	phone.keys()
dict_keys(['Graham',	'John',	'Eric'])
>>>	phone.items()
dict_items([('Graham',	8462),	('John',	9224),	('Eric',	7724)])
>>>	for	item	in	phone.items()	:
				print(item)

('Graham',	8462)
('John',	9224)
('Eric',	7724)

The	first	example	shows	using	a	for	loop	directly	on	a	dictionary.	The	loop	variable	key
becomes	each	key	in	the	dictionary	in	turn.	This	prints	out	all	the	key,	value	pairs	of
the	dictionary.	This	is	the	most	common	method	of	looping	through	dictionaries.	The
next	two	examples	show	the	keys	and	items	dictionary	methods.	These	two	methods
return	a	special	class	(similar	to	that	of	range),	but	as	can	be	seen	they	contain	a
sequence	of	all	the	keys	or	all	the	key,	value	pairs	that	are	known	as	items.	These
methods	(and	a	similar	values	are	included	to	provide	an	efficient	way	of	getting	the
keys,	values,	or	both	and	looping	through	them,	as	shown	in	the	last	example.	They
are	rarely	used	in	any	other	way.

Using	Dictionaries

Let’s	start	with	a	simple	example	of	a	function	that	takes	a	filename	and	creates	a
dictionary	where	the	keys	are	the	line	numbers	and	the	values	are	the	corresponding
lines.	Below	is	the	function	definition.

def	get_lines(filename)	:
				"""Return	a	dictionary	containing	each	line	in	the	file	as	values
				and	the	corresponding	line	number	as	keys.

				Parameters:
								filename	(str):	Name,	including	path,	of	the	file	to	be	opened.

				Return:
								dict:	Dictionary	containing	the	contents	of	the	file.

				Preconditions:
								'filename'	is	the	name	of	a	file	that	can	be	opened	for	reading.
				"""
				lines	=	{}
				f	=	open(filename,	'r')
				for	i,	line	in	enumerate(f)	:
								lines[i]	=	line.strip()
				f.close()
				return	lines

The	first	line	creates	an	empty	dictionary,	lines,	for	us	to	store	our	lines	in.	We	then
open	the	filename	in	universal	read	mode.	Using	a	for	loop,	along	with	the	enumerate
function	seen	before,	the	index	and	line	is	easily	obtained.	We	then	use	the	square
bracket	notation	to	added	the	stripped	line	as	the	value	to	the	dictionary,	with	the
index	(being	the	line	number)	as	the	key.	The	line	was	stripped	using	the	strip	method
of	strings,	as	this	is	more	useful	if	we	were	to	do	anything	more	with	this	dictionary.
The	dictionary	is	then	returned.

Having	saved	this	code	as	get_lines.py,	it	can	be	tested.	The	following	is	a	test	using
the	text.txt	file	use	previously.

>>>	lines	=	get_lines('text.txt')
>>>	lines
{0:	'Python	is	fun,',	1:	'it	lets	me	play	with	files.',
2:	'I	like	playing	with	files,',	3:	'I	can	do	some	really	fun	stuff.',
4:	'',	5:	'I	like	Python!'}
>>>	lines[5]
'I	like	Python!'

Let’s	now	look	at	a	slightly	more	complex	example.	This	example	will	look	at
determining	the	frequency	count	of	characters	in	a	file.	We	will	need	to	open	the	file
for	reading,	read	the	contents	of	the	file	and	count	how	many	times	each	character
appears.	Dictionaries	are	ideal	for	this	—	we	can	use	the	characters	as	the	keys	and
the	character	counts	as	the	associated	values.	We	will	need	to	make	use	of	the
dictionary	method	get.

>>>	d	=	{}
>>>	help(d.get)
Help	on	built-in	function	get:

get(...)
				D.get(k[,d])	->	D[k]	if	k	in	D,	else	d.		d	defaults	to	None.

>>>	d	=	{"one"	:	1,	"three"	:	3	,"many"	:	99999999999}
>>>	d["one"]
1
>>>	d.get("one")
1
>>>	d["two"]

Traceback	(most	recent	call	last):
		File	"<pyshell#4>",	line	1,	in	<module>
				d["two"]

KeyError:	'two'
>>>	print(d.get("two"))
None
>>>	d.get("two",	"that	number	does	not	exist")
'that	number	does	not	exist'

The	get	method	is	similar	to	the	square	bracket	notation	that	we	have	used	to	look	up
values	associated	with	a	key.	The	biggest	difference	is	that	get	does	not	raise	an	error
if	the	key	is	not	in	the	dictionary	as	the	square	bracket	notation	does.

get	Syntax

<div	class="language-python	highlighter-rouge"><div	class="highlight"><pre	
class="highlight"><code>dictionary.
get(<span	
class="n">key)	<span	
class="n">dictionary.get
(key,	
d)	</code></pre></div>				
</div>

Semantics

get	takes	in	a	key	as	an	argument	and	either	returns	the	value	in	dictionary
associated	with	that	key	or,	if	that	key	is	not	in	dictionary,	then	get	returns	d.	d	is
an	optional	argument	of	get	and	defaults	to	None.

Now	we	can	have	a	look	at	our	example.	The	following	is	the	required	function
definition.

def	freq_count(filename)	:
				"""Return	the	frequency	count	of	characters	occuring	in	a	file.

				Parameters:
								filename	(str):	Name,	including	path,	of	the	file	to	be	opened.

				Return:
								dict:	Frequency	of	each	character	occuring	in	the	file.

				Preconditions:
								'filename'	is	the	name	of	a	file	that	can	be	opened	for	reading.
				"""
				freq	=	{}
				file	=	open(filename,	'r')
				for	line	in	file	:
								for	char	in	line	:
												freq[char]	=	freq.get(char,	0)	+	1
				file.close()
				return	freq

The	function	starts	with	creating	an	empty	dictionary,	freq.	Then	the	function	opens
the	file	and	iterates	through	the	lines	of	the	file	with	a	for	loop.	Inside	the	for	loop	is

another	(nested)	for	loop	to	iterate	through	the	line	to	get	each	character.	Inside	that
for	loop	we	start	with	the	square	bracket	notation	for	adding	a	key,	value	pair	to	freq
using	the	char	as	the	key.	We	then	use	the	get	method	to	look	up	the	same	key	but	if	
char	is	not	in	freq	then	0	is	returned.	The	value	returned	by	get	is	incremented	by	1,
thus	incrementing	the	number	of	occurrences	of	char.	get	is	used	as	it	provides	the
perfect	base	for	this	problem.	If	the	char	is	in	freq	then	the	value	(the	count)	is
returned	and	then	has	1	added	to	it	and	then	that	new	value	is	assigned	to	the	key.	If	
char	is	not	in	freq	then	get	returns	0	which	allows	us	to	add	1	to	it	as	this	will	be	the
first	occurrence	of	char	in	the	file.

After	saving	freq.py,	it	can	be	applied	to	a	few	files	that	we	have	used	in	previous
sections.

>>>	freq_count("sgame.txt")
{'	':	125,	'\n':	9,	'1':	5,	'3':	3,	'2':	3,	'5':	3,	'4':	3,	'7':	2,	'6':	3,	
'9':	4,	'8':	2}
>>>	freq_count("text.txt")
{'\n':	6,	'!':	1,	'	':	19,	',':	2,	'.':	2,	'I':	3,	'P':	2,	'a':	4,	'c':	1,
'e':	8,	'd':	1,	'g':	1,	'f':	6,	'i':	9,	'h':	4,	'k':	2,	'm':	2,	'l':	9,	'o':	4,	
'n':	6,	'p':	2,	's':	6,	'r':	1,	'u':	3,	't':	7,	'w':	2,	'y':	5}
>>>	freq_count("words.txt")
{'\n':	252,	'!':	12,	'	':	943,	"'":	40,	')':	16,	'(':	16,	'-':	7,	',':	48,	
'.':	211,	'2':	1,	'4':	1,	'?':	10,	'A':	6,	'C':	7,	'B':	6,	'E':	3,	'D':	12,	
'G':	7,	'F':	30,	'I':	15,	'H':	2,	'K':	1,	'J':	1,	'M':	31,	'L':	4,	'O':	16,	
'N':	10,	'P':	13,	'S':	14,	'R':	5,	'U':	3,	'T':	11,	'W':	8,	'V':	4,	'Y':	10,	
'a':	203,	'`':	10,	'c':	51,	'b':	40,	'e':	324,	'd':	114,	'g':	78,	'f':	48,	
'i':	134,	'h':	203,	'k':	21,	'j':	3,	'm':	38,	'l':	99,	'o':	298,	'n':	179,	'q':	5,	
'p':	48,	's':	155,	'r':	250,	'u':	98,	't':	294,	'w':	50,	'v':	15,	'y':	72,	'x':	1,	
'z':	3}

Note	that,	instead	of	reading	the	file	line-by-line,	we	could	have	read	the	entire	file
into	a	single	string,	using	read	and	processed	that	character-by-character.	However,
for	a	very	large	file	this	approach	would	generate	a	very	large	(especially	in	memory)
string.

Formatting	Strings

The	dictionaries,	especially	when	large,	do	not	print	out	very	nicely.	Let’s	write	a
function	that	takes	a	dictionary	and	displays	it	in	an	easy	to	read	format	(also	called
‘pretty	printing’).	To	be	able	to	‘pretty	print’	we	need	to	be	able	to	print	in	a
formatted	way.	We	have	seen	simple	examples	of	this	already	by	simply	printing	one
value	after	another	separated	by	commas.	Python	has	another	approach	using	the	
format	method	of	strings.	format	operates	on	a	format	string	which	has	segments
where	substitutions	are	made.	The	items	substituted	into	this	format	string	are	the
arguments	of	the	format	method.	Following	are	a	few	examples	using	the	format
method.

>>>	help(str.format)
Help	on	method_descriptor:

format(...)
				S.format(*args,	**kwargs)	->	string

				Return	a	formatted	version	of	S,	using	substitutions	from	args	and	kwargs.
				The	substitutions	are	identified	by	braces	('{'	and	'}').

>>>	a	=	10
>>>	b	=	22
>>>	c	=	42

>>>	'a	=	{0},	b	=	{1},	c	=	{2}'.format(a,	b,	c)
'a	=	10,	b	=	22,	c	=	42'
>>>	'a	=	{0},	b	=	{1},	c	=	{2}'.format(b,	c,	a)
'a	=	22,	b	=	42,	c	=	10'
>>>	'a	=	{0},	b	=	{1},	c	=	b	+	2	*	a	=	{1}	+	2	*	{0}	=	{2}'.format(a,b,c)
'a	=	10,	b	=	22,	c	=	b	+	2	*	a	=	22	+	2	*	10	=	42'
>>>	s	=	'hello'
>>>	'{0}	world,	{1}'.format(s,	c)
'hello	world,	42'
>>>	'a	=	{0},	b	=	{1},	c	=	{2}'.format(b,	c)

Traceback	(most	recent	call	last):
		File	"<pyshell#8>",	line	1,	in	<module>
				'a	=	{0},	b	=	{1},	c	=	{2}'.format(b,	c)
IndexError:	tuple	index	out	of	range
>>>	'a	=	{0},	b	=	{1},	c	=	{2}'.format(a,	b,	c,	s)
'a	=	10,	b	=	22,	c	=	42'
>>>	our_format	=	'print	{0}	everywhere,	{1}'
>>>	our_format.format(a,	s)
'print	10	everywhere,	hello'

The	first	example	is	of	the	help	description	of	the	format	method.	The	next	two
examples	use	the	format	method	to	print	three	numbers	out	with	descriptors	as	to
what	they	are.	Notice	how	the	order	of	the	arguments	of	format	is	associated	with	the
numbers	in	the	substitutions.	The	next	example	shows	that	substitutions	can	be	made
more	than	once	into	the	format	string.	The	next	example	shows	that	multiple	types
can	be	printed.	The	next	example	shows	that	if	there	are	more	substitutions	to	be
made	than	there	are	arguments	in	format	then	an	error	is	raised.	However,	the	next
example	shows	that	if	there	are	more	arguments	in	format	than	substitution	areas	then
there	is	no	error,	the	extra	values	are	ignored	as	the	example	shows	that	the	format
string	can	be	assigned	to	a	variable	and	used	later	to	format	print.

format	Syntax

string.format(sequence)

Semantics

Values	from	sequence	are	substituted	into	substitution	place	holders	in	string.
These	place	holders	are	denoted	by	numbers	starting	from	0	inside	braces
(curly	brackets).	The	index	of	the	value	in	sequence	is	the	corresponding
number	that	the	value	is	substituted.	The	string	resulting	from	the	substitutions
is	returned.

Aside:	More	Formatting	options

The	format	method,	along	with	the	format	string,	has	many	options	to	enable
different	forms	of	formatted	printing.	Following	are	examples	of	some	of	the
possible	formatting	options.

<div	class="language-python	highlighter-rouge"><div	class="highlight"><pre	
class="highlight"><code>>>>	<span	
class="mf">60.0/22	
2.727272727272727	>>>	

"2	decimal	places	-	{0:.2f}".
format(<span	
class="mf">60.0/22<span	
class="p">)	'2	decimal	places	-	2.73'	<span	
class="o">>>>	"5	decimal	places	-	{0:.5f}"
.format
(60.0/<span	
class="mi">22)	'5	decimal	
places	-	2.72727'	</code></pre></div>				</div>

It	is	possible	to	print	to	a	certain	number	of	decimal	places	by	using	a	:.nf	after
the	index	number.	n	here	is	the	number	of	decimal	places	that	are	to	be	used.
The	examples	above	show	printing	to	2	and	5	decimal	places.

<div	class="language-python	highlighter-rouge"><div	class="highlight"><pre	
class="highlight"><code>>>>	<span	
class="s">"use	indexing	-	{0[3]},	{0[1]}".<span	
class="nb">format("hello"
)	'use	indexing	-	l,	e'	
</code></pre></div>				</div>

Indexing	can	be	used	on	sequences	inside	the	format	string	by	indexing	the
substitution	placeholder.	The	above	example	uses	indexing	twice	during
formatting.

<div	class="language-python	highlighter-rouge"><div	class="highlight"><pre	
class="highlight"><code>>>>	<span	
class="s">"give	spacing	-	{0:10},	{1:7}".<span	
class="nb">format("hi"
,	"bye")	
'give	spacing	-	hi								,	bye				'	<span	
class="o">>>>	"give	spacing	-	{0:10},	{1:7}"
.format
("longer",	<span	
class="s">"bye")	'give	spacing	
-	longer				,	bye				'	</code></pre></div>				</div>

Spacing	can	be	made	around	the	items	that	are	to	be	printed	by	adding	a	:n
after	the	substitution	place	holder.	n	here	represents	the	number	of	places	that
are	required.	The	item	fills	up	the	spacing	to	its	length	then	blank	spaces	are
added	to	fill	the	rest.	Above	is	two	examples	of	printing	with	spacing	around	a
couple	of	strings.	These	are	just	a	few	of	the	possible	options	available	for
format	printing.	More	options	and	examples	are	available	at	the	Python	docs
page	for	format	strings.

Let’s	return	to	our	example.	Below	is	the	function	definition	for	‘pretty	printing	our
dictionary.

def	display_dictionary(dictionary)	:
				"""Pretty	print	'dictionary'	in	key	sorted	order.

				Parameters:
								dictionary	dict:	Dictionary	to	be	pretty	printed.

https://docs.python.org/3/library/string.html#formatstrings

				"""
				keys	=	dictionary.keys()
				keys	=	sorted(keys)
				for	k	in	keys	:
								print('{0}		:		{1}'.format(repr(k),	dictionary[k]))

The	function	first	gets	the	keys	of	the	dictionary	and	sorts	them.	The	sorted	function
returns	a	sorted	list	of	the	given	sequence.	Now,	when	the	dictionary	is	printed,	there
is	a	nice	order	to	the	characters.	Then	it	iterates	through	the	keys	list	and	prints	them
using	format.	The	keys	are	printed	using	the	repr	function.	This	makes	the	strings	print
with	the	‘	‘	around	them,	if	we	had	printed	the	strings	directly	we	would	have	lost	the
quotes.	repr	returns	the	representation	of	the	argument.	This	can	be	seen	when	the	
disp_dict.py	file	is	saved	and	tested	as	below.

>>>	freq	=	freq_count('sgame.txt')
>>>	display_dictionary(freq)
'\n'		:		9
'	'		:		125
'1'		:		5
'2'		:		3
'3'		:		3
'4'		:		3
'5'		:		3
'6'		:		3
'7'		:		2
'8'		:		2
'9'		:		4

Now	go	away	or	I	will	taunt	you	a	second	time

Histogram	Example
Let’s	look	at	an	example	that	combines	the	use	of	dictionaries	and	exception	handling.
This	example	is	about	statistical	analysis	of	data.	Specifically,	we	want	to	read	data
from	a	file	(one	floating	point	number	per	line)	and	produce	a	histogram	of	the	data.
To	do	this	we	want	to	subdivide	numbers	into	‘buckets’	and	count	how	many	times
data	values	fall	in	each	bucket.	For	the	program,	we	will	ask	the	user	for	the	name	of
the	file	containing	the	data	to	be	processed,	and	the	width	of	each	bucket.	For	this
example	we	will	use	the	file	data1.txt.

Aside:	Constructing	randomised	data	sets

This	file	was	constructed	as	follows.

<div	class="language-python	highlighter-rouge"><div	class="highlight"><pre	
class="highlight"><code>>>>	<span	
class="kn">import	random	<span	
class="o">>>>	f	=
	open(<span	
class="s">'data1.txt',	<span	
class="s">'w')	>>>
	for	i	<span	
class="ow">in	range(
1000)	:

				f.<span	
class="n">write(str
(random.
normalvariate(<span	
class="mi">0,	10<span	
class="p">))	+	'<span	
class="se">\n')

>>>	f.close()	</code></pre></div>	</div>

The	random	module	contains	functions	for	producing	pseudo-random	numbers
from	different	distributions.	In	this	case,	we	use	a	normal	distribution	with
mean	0	and	standard	deviation	10.	We	write	1000	generated	random	numbers
into	the	file.	Note	we	need	to	add	a	newline	character	otherwise	all	the
numbers	will	be	on	a	single	line.

For	this	problem,	we	will	produce	a	stand-alone	program.	The	program	consists	of
three	parts:	getting	input	from	the	user,	computing	the	histogram,	and	writing	out	the
results.	Later	we	will	write	a	GUI	version	of	the	same	program.

We	start	with	the	main	part	—	a	function	that	takes	a	file	name	and	a	bucket	size	and
returns	a	dictionary	of	bucket	counts.	The	key	for	the	dictionary	will	be	the	‘bucket
position’	—	i.e.	how	many	buckets	away	from	0	this	bucket	is.	So,	for	example,	if
bucket	size	=	10,	a	value	between	0	and	10	will	be	in	bucket	0	and	a	value	between
-10	and	0	will	be	in	bucket	-1.

Here	is	the	function	definition.

def	make_histogram(filename,	bucketsize)	:
				"""Compute	the	histogram	of	the	data	in	'filename'	with	given	bucket	size.

				An	error	message	will	be	produced	if	either	the	file	cannot	be	opened
				for	reading	or	an	invalid	data	value	is	found.

				Parameters:
								filename	(str):	Name	of	the	file	from	which	data	is	read.
								bucketsize	(int):	Size	of	the	data	bucket.
								
				Return:
								dict<int,	float>:	Histogram	of	occurrences	of	data	in	file.

				Preconditions:
								bucketsize	>	0
				"""
				try	:
								file	=	open(filename,	'r')
				except	IOError	:
								print('Error:	cannot	open	'	+	filename	+	'	for	reading')
								return	{}

				hist	=	{}
				for	data_element	in	file	:
								try	:
												val	=	float(data_element)
								except	ValueError	:
												print('Error:	cannot	convert	"'	+	data_element	+	'"	to	a	float')
												return	{}
								if	val	<	0	:
												bucket	=	int((val-bucketsize)	/	bucketsize)
								else	:

												bucket	=	int(val	/	bucketsize)
								hist[bucket]	=	hist.get(bucket,	0)	+	1

				return	hist

The	first	thing	this	function	does	is	attempt	to	open	the	file.	Unlike	previous
examples,	we	have	surrounded	this	with	a	try	statement.	This	allows	us	to	catch	the
error	raised	if	the	file	cannot	be	opened	for	reading.	If	an	IOError	is	raised	then	we
print	a	simple	error	message	and	return	an	empty	dictionary.	We	then	create	an
empty	dictionary,	hist	to	store	our	data	in.	We	then	go	through	every	line	in	the	file
directly	with	a	for	loop.	The	first	part	of	the	body	of	the	for	loop	is	to	attempt	to
convert	the	line	to	a	float.	This	is	also	surrounded	in	a	try	statement	to	test	if	the	line
can	be	converted.	If	it	cannot	then	the	ValueError	is	caught	and	again	a	simple	error
message	is	printed	and	an	empty	dictionary	is	returned.	We	then	check	the	sign	of	the
number	val.	If	it	is	negative,	we	use	one	formula	for	which	bucket	it	would	belong	in;
otherwise,	we	use	a	different	formula.	This	is	because	we	use	rounding	when	we
convert	from	a	float	to	an	integer,	as	Python	always	rounds	down	we	need	to	treat	the
different	signed	numbers	differently.	The	last	part	of	the	for	loop	is	to	increase	the
count	of	how	many	items	are	in	that	particular	bucket.	This	is	the	same	as	used	in	the
character	frequency	example	above.	Finally,	we	return	hist.

Note	the	power	of	dictionaries	here	—	we	could	have	used	lists	to	store	the	bucket
counts	BUT	we	need	to	know	the	range	of	data	values	first.	This	would	have	meant
reading	the	file	twice	or	loading	all	the	data	into	another	list.	The	processing	would
also	have	been	more	complicated	as	well.	Now	we	can	save	our	program	so	far,	
histogram1.py,	and	test	the	function.	We	also	create	a	file	data2.txt	and	test	the
function	using	this	file	(it	is	a	good	idea	to	test	small	first).

>>>	make_histogram('data2.txt',	1.0)
{0:	2,	1:	1,	-1:	1}
>>>	make_histogram('data1.txt',	1.0)
{0:	41,	1:	29,	2:	35,	3:	33,	4:	45,	5:	35,	6:	43,	7:	27,	8:	33,	9:	23,
10:	17,	11:	15,	12:	10,	13:	12,	14:	23,	15:	10,	16:	6,	17:	6,	18:	7,	19:	4,	20:	8,	
21:	4,	22:	4,	23:	1,	24:	5,	25:	2,	26:	2,	27:	1,	28:	1,	29:	2,	30:	1,	34:	1,	
35:	1,	-1:	36,	-32:	1,	-30:	1,	-28:	2,	-26:	1,	-25:	2,	-24:	6,	-23:	5,	-22:	4,	
-21:	6,	-20:	2,	-19:	6,	-18:	6,	-17:	10,	-16:	18,	-15:	11,	-14:	17,	-13:	20,	
-12:	24,	-11:	30,	-10:	23,	-9:	25,	-8:	39,	-7:	40,	-6:	28,	-5:	33,	-4:	50,	-3:	35,	
-2:	32}

The	next	step	is	to	get	user	input.	Given	we	want	a	positive	number	for	the	bucket
size	we	write	the	following	function	that	checks	user	input.

def	get_bucketsize()	:
				"""Return	the	bucket	size	asked	from	the	user.

				Ensures	that	a	valid	bucket	size	is	entered.

				Return:
								float:	Number	entered	for	the	bucket	size.
				"""
				while	True	:
								user_input	=	input("Bucket	size:	")
								try	:
												size	=	float(user_input)
								except	ValueError	:
												print('Not	a	number')
												continue
								if	size	>	0	:

												break
								print('Number	must	be	positive')
				return	size

This	function	starts	with	an	infinite	while	True	loop;	this	enables	us	to	keep	asking	the
user	until	correct	input	is	given.	Then	the	user	is	prompted	for	the	bucket	size.	The
function	then	attempts	to	convert	the	bucket	size	given	by	the	user	into	a	float.	This	is
surrounded	by	a	try	statement	to	catch	a	ValueError	in	case	the	user	does	not	input	a
number.	If	the	user	input	is	not	a	number	then	a	message	is	printed	and	then	on	the
next	line	is	a	continue	statement.	continue	starts	at	the	begining	of	the	loop	body.	This
effectively	skips	all	the	code	after	the	continue,	then	since	we	are	at	the	top	of	the	loop
again	the	function	asks	the	user	again	for	a	bucket	size.	If	the	input	is	a	number,	then
it	is	tested	to	see	if	it	is	positive.	If	it	is	positive	we	break	out	of	the	while	loop	and
return	the	bucket	size.	If	it	is	not	then	we	print	out	a	message	and	the	loop	starts
again.	Saving	this	code	into	histogram2.py	we	can	do	a	few	tests.

>>>	get_bucketsize()
Bucket	size:	a
Not	a	number
Bucket	size:	-10
Number	must	be	positive
Bucket	size:	3
3.0

Loop	with	continue

If	continue	is	used	inside	the	body	of	a	loop,	when	the	continue	line	is	executed
the	loop	moves	on	to	the	next	iteration	of	the	loop	immediately.	For	while	loops,
this	simply	means	starting	the	loop	from	the	beginning,	effectively	ignoring	the
code	after	the	continue.	For	a	for	loop	it	works	like	the	while	loop	except	that	it
moves	onto	the	next	item	in	the	object	being	iterated	through.

The	last	part	is	to	pretty	print	the	resulting	histogram.	The	next	function	(similar	to
the	frequency	count	one)	does	the	job.

def	pp_histogram(histogram,	bucketsize)	:
				"""	Pretty	prints	the	histogram	using	the	size	of	the	buckets."""
				keys	=	histogram.keys()
				keys	=	sorted(keys)
				for	key	in	keys	:
								print('({0:7.2f},	{1:7.2f})	:	{2:3}'.format(
												key*bucketsize,	(key+1)*bucketsize,	histogram[key]))

This	function	first	gets	the	list	of	the	keys	from	the	dictionary,	histogram,	using	the	keys
method	of	dictionaries.	This	enables	us	to	perform	the	next	line,	which	is	to	sort	this
keys	dictionary	so	that	it	is	in	order	from	smallest	to	largest.	We	then	iterate	over	this
list	and	print	out	the	histogram	information.	The	first	two	substitutions	of	the	format
string	use	two	methods	of	the	extra	format	string	options	discussed	in	the	notes	about
the	dictionary	data	structure.	These	segments	of	the	format	string	look	like	:7.2f.	The
7	means	to	have	spacing	of	7	characters.	The	.2f	means	to	print	as	floats	to	2	decimal
places.	The	last	substitution	area	contains	the	index	number	with	a	spacing	of	3

characters.	As	the	item	to	be	printed	here	is	just	an	integer	it	needs	no	float
formatting.

Here	is	the	result	of	saving	our	histogram3.py	code	and	applying	this	function	to	the
histogram	for	data1.txt.

>>>	pp_histogram(make_histogram('data1.txt',	5.0),	5.0)
(-35.00,		-30.00)	:			1
(-30.00,		-25.00)	:			4
(-25.00,		-20.00)	:		23
(-20.00,		-15.00)	:		42
(-15.00,		-10.00)	:	102
(-10.00,			-5.00)	:	155
(-5.00,				0.00)	:	186
(0.00,				5.00)	:	183
(5.00,			10.00)	:	161
(10.00,			15.00)	:		77
(15.00,			20.00)	:		33
(20.00,			25.00)	:		22
(25.00,			30.00)	:			8
(30.00,			35.00)	:			2
(35.00,			40.00)	:			1

To	complete	the	stand-alone	program	we	just	need	to	add	the	following	code	to	the
end	of	the	code	that	we	have	written	so	far.

print('Print	a	histogram\n')
filename	=	input('File	name:	')
bucketsize	=	get_bucketsize()
print('\n\n--\n\n')
pp_histogram(make_histogram(filename,	bucketsize),	bucketsize)

The	complete	code	for	this	example	is	in	histogram.py.	If	we	run	the	module	from	IDLE
we	get	the	following	output	in	the	interpreter	window.

Print	a	histogram

File	name:	data1.txt
Bucket	size:	5.0

--

(-35.00,		-30.00)	:			1
(-30.00,		-25.00)	:			4
(-25.00,		-20.00)	:		23
(-20.00,		-15.00)	:		42
(-15.00,		-10.00)	:	102
(-10.00,			-5.00)	:	155
(-5.00,				0.00)	:	186
(0.00,				5.00)	:	183
(5.00,			10.00)	:	161
(10.00,			15.00)	:		77
(15.00,			20.00)	:		33
(20.00,			25.00)	:		22
(25.00,			30.00)	:			8
(30.00,			35.00)	:			2

(35.00,			40.00)	:			1

What	is	going	on?	Well,	all	the	expressions	in	the	file	are	evaluated	in	the	interpreter.
The	definitions	are	evaluated	and	as	a	consequence	are	added	to	the	interpreter.	The
other	expressions	are	then	evaluated	—	this	is	really	the	program	being	executed.

Brave	Sir	Robin	ran	away,	bravely	ran	away	away.

When	danger	reared	his	ugly	head,	he	bravely	turned	his	tail	and	fled.

Yes,	brave	Sir	Robin	turned	about,	he	turned	his	tail,	he	chickened	out.

Bravely	taking	to	his	feet,	he	beat	a	very	brave	retreat.

A	brave	retreat	by	Sir	Robin.

I/O
Files
It	is	very	common	in	programming	that	input	is	received	from	a	file	instead	of,	or	as
well	as,	user	input.	It	is	therefore	necessary	to	be	able	to	open,	read	and	save	to	files.
Python	has	a	file	object	that	enables	us	to	perform	these	tasks.

Reading	a	File

To	show	how	to	use	the	file	object	in	Python	here	are	a	few	examples	using	the	
text.txt	file.

>>>	f	=	open('text.txt',	'r')
>>>	type(f)
<class	'_io.TextIOWrapper'>
>>>	f.read()
'Python	is	fun,\nit	lets	me	play	with	files.\nI	like	playing	with	files,\nI	can	
do	some	really	fun	stuff.\n\nI	like	Python!\n'
>>>	f.close()
>>>	f.read()
Traceback	(most	recent	call	last):
		File	"<pyshell#5>",	line	1,	in	<module>
				f.read()
ValueError:	I/O	operation	on	closed	file
>>>

The	first	line	shows	opening	a	file	using	the	open	function	and	assigns	it	to	the	variable
f.	The	open	statement	takes	two	string	parameters;	one	is	the	name	of	the	file	to	be
opened.	(The	file	name	may	include	the	path	to	the	file	if	it	is	in	a	different	directory
to	the	Python	program.)	The	other	is	the	open	mode,	we	will	discuss	this	soon.	The
second	example	shows	that	f	is	a	file	object.	The	third	example	shows	one	of	the
multiple	methods	for	getting	the	data	from	the	file.	The	fourth	example	shows	closing
the	file,	it	is	important	to	close	a	file	after	the	program	is	finished	with	it.	The
last	example	shows	that	it	is	not	possible	to	perform	operations	on	a	closed	file.

open	Syntax

open(filename,	mode)	Where	filename	is	a	string	which	is	the	name	of	the	file	and	
mode	is	a	string	indicating	the	opening	mode.

Semantics

mode	is	usually	‘r’	or	‘w’	for	read	or	write	respectively.	filename	can	either	be
relative	to	the	current	working	directory	(i.e	the	directory	or	folder	from	which
the	program	is	executed)	or	can	contain	the	full	path	to	the	file.

More	Reading

As	before,	dir(f),	will	list	all	the	methods	available	for	use	with	files.	The	more	useful
ones	for	us	are	the	ones	that	allow	us	to	read	from	and	write	to	the	file.	Below	are
some	examples	of	the	read	methods	we	have	not	seen	yet.

>>>	f	=	open('text.txt',	'r')
>>>	dir(f)
['_CHUNK_SIZE',	'__class__',	'__del__',	'__delattr__',	'__dict__',	'__dir__',	
'__doc__',	'__enter__',	'__eq__',	'__exit__',	'__format__',	'__ge__',	
'__getattribute__',	'__getstate__',	'__gt__',	'__hash__',	'__init__',	'__iter__',	
'__le__',	'__lt__',	'__ne__',	'__new__',	'__next__',	'__reduce__',	'__reduce_ex__',	
'__repr__',	'__setattr__',	'__sizeof__',	'__str__',	'__subclasshook__',	
'_checkClosed',	'_checkReadable',	'_checkSeekable',	'_checkWritable',	
'_finalizing',	'buffer',	'close',	'closed',	'detach',	'encoding',	'errors',	
'fileno',	'flush',	'isatty',	'line_buffering',	'mode',	'name',	'newlines',	'read',	
'readable',	'readline',	'readlines',	'seek',	'seekable',	'tell',	'truncate',	
'writable',	'write',	'writelines']
>>>	f.readline()
'Python	is	fun,\n'
>>>	f.readline()
'it	lets	me	play	with	files.\n'
>>>	f.readline()
'I	like	playing	with	files,\n'
>>>	f.readline()
'I	can	do	some	really	fun	stuff.\n'
>>>	f.readline()
'\n'
>>>	f.readline()
'I	like	Python!\n'
>>>	f.readline()
''
>>>	f.close()
>>>	f	=	open('text.txt',	'r')
>>>	f.readlines()
['Python	is	fun,\n',	'it	lets	me	play	with	files.\n',	'I	like	playing	with	
files,\n',	'I	can	do	some	really	fun	stuff.\n',	'\n',	'I	like	Python!\n']
>>>	f.close()
>>>	f	=	open('text.txt',	'r')
>>>	for	line	in	f	:
				print(line)

Python	is	fun,

it	lets	me	play	with	files.

I	like	playing	with	files,

I	can	do	some	really	fun	stuff.

I	like	Python!

>>>	f.close()
>>>

The	first	few	examples	are	the	use	of	readline,	it	returns	one	line	of	the	file	each	time
it	is	called.	When	there	are	no	lines	left	readline	returns	an	empty	string.	The	next
example	is	of	readlines	(notice	the	extra	s).	readlines	returns	a	list	with	each	element
in	the	list	being	a	string	of	each	line	in	the	file.	Notice	how	each	line	of	the	file	ends	in
a	\n.	This	is	the	new	line	character;	it	is	the	character	that	is,	invisibly,	inserted	when
we	hit	the	Enter	(return)	key.	The	last	example	is	the	use	of	a	for	loop	to	directly
iterate	over	the	file	one	line	at	a	time.	Notice	how	there	is	an	extra	line	in	between
each	line	that	we	print.	This	is	caused	by	the	new	line	character,	\n.	print	interprets
the	new	line	and	inserts	it,	but	print	also	inserts	its	own	new	line,	therefore	we	end	up
with	two	new	lines	printed.

Writing

Now	let’s	have	a	look	at	a	method	for	writing	to	a	file:

>>>	f	=	open("lets_write.txt",	"w")
>>>	f.write("I'm	writing	in	the	file\n")
25
>>>	text	=	['look',	'more',	'words']
>>>	for	word	in	text	:
				f.write(word)

>>>	f.close()
>>>

Now	if	we	look	at	the	file	it	should	look	like	lets_write1.txt.	Notice	how	we	need	to	put
in	newlines	manually	when	required,	they	are	not	automatically	inserted.	The	write
method	returns	the	number	of	bytes	or	characters	that	it	wrote	to	the	file,	in	our
example	the	string	"I'm	writing	in	the	file\n"	is	25	characters	long.	Also,	notice	how
we	did	not	have	to	first	create	the	destination	file.	Opening	the	file	for	writing	creates
the	file	if	it	does	not	already	exist.

Let’s	look	at	another	method	of	writing	to	a	file:

>>>	f	=	open("lets_write.txt",	"w")
>>>	text	=	['many,	many	\n',	'lines\n',	'are\n',	'easily\n',	'inserted\n',
								'this	way!']
>>>	f.writelines(text)
>>>	f.close()

Now	if	we	look	at	the	file	again	it	should	look	like	lets_write2.txt.	First,	notice	that	the
data	we	wrote	before	to	the	file	is	no	longer	there,	this	is	because	‘w’	writes	from	the
start	of	the	file	and	writes	over	anything	that	is	already	there.	Notice	again	that
the	newlines	had	to	be	inserted	manually.

Read	and	Write

Let’s	look	at	an	example	that	uses	both	reading	and	writing,	with	some	functionality
to	process	the	data.	We	are	going	to	write	a	function	that	will	take	two	filenames	as
arguments	and	turn	all	the	characters	in	one	file	into	uppercase	and	write	them	into

the	other	file.	Here	is	the	code:

def	make_all_caps(in_filename,	out_filename)	:
				"""Convert	all	characters	in	'in_filename'	to	caps	and	save	to	'out_filename'.

				Parameters:
								in_filename	(string):	Name	of	the	file	from	which	to	read	the	data.
								out_filename	(string):	Name	of	the	file	to	which	the	data	is	to	be	saved.

				Preconditions:
								The	files	can	be	opened	for	reading	and	writing.
				"""
				fin	=	open(in_filename,	'r')
				fout	=	open(out_filename,	'w')
				for	line	in	fin	:
								fout.write(line.upper())
				fin.close()
				fout.close()

The	first	thing	we	do	is	open	the	in_filename	in	Universal	read	mode	for	portability.	We
then	open	the	out_filename	in	write	mode.	Next,	we	use	a	for	loop	to	iterate	over	the
lines	in	fin.	The	body	of	the	for	loop	writes	the	uppercase	version	(using	strings	upper
method)	of	each	line	of	the	input	file	(fin)	to	the	output	file	(fout).	Both	files	are	then
closed	so	that	the	file	pointers	are	not	left	open.	Saving	as	make_all_caps.py	we	can	run
an	example	using	our	text.txt	file	from	earlier.

>>>	make_all_caps('text.txt',	'text_caps.txt')

If	we	now	have	a	look	at	text_caps.txt.	it	should	have	the	contents	of	text.txt	all	in
upper-case.

Files	often	have	blank	lines	in	them	in	one	form	or	another.	When	dealing	with	files	it
is	generally	easier	to	ignore	blank	lines	than	to	attempt	to	process	them.	However,
blank	lines	are	not	really	blank,	they	contain	the	new	line	character	‘\n’.

Let’s	modify	our	code	above	to	remove	blank	lines	from	the	file	as	well	as	make	it	all
upper	case.

def	all_caps_no_blanks(in_filename,	out_filename)	:
				"""Changes	every	character	in	'in_filename'	to	all	caps,	
							removes	blank	lines	and	saves	to	'out_filename'.

				Parameters:
								in_filename	(string):	Name	of	the	file	from	which	to	read	the	data.
								out_filename	(string):	Name	of	the	file	to	which	the	data	is	to	be	saved.

				Preconditions:
								The	files	can	be	opened	for	reading	and	writing.
				"""
				fin	=	open(in_filename,	'r')
				fout	=	open(out_filename,	'w')
				for	line	in	fin	:
								if	line	!=	'\n'	:
												fout.write(line.upper())
				fin.close()
				fout.close()

Notice	the	change	to	the	function	is	the	addition	of	the	if	statement	to	check	if	the
current	line	is	equal	to	a	new	line	character.	If	it	is	not	then	we	write	the	upper	case
version	of	the	line	to	the	fout	file.	Now	if	we	run	all_caps_no_blanks1.py	on	our	text.txt
file	like	below:

>>>	all_caps_no_blanks('text.txt',	'text_caps_nb.txt')

We	should	now	have	a	file	that	looks	like	text_caps_nb.txt.

Blank	lines	might	not	just	include	new	line	characters,	they	may	also	include	other
forms	of	whitespace,	such	as	spaces	and	tabs.	If	we	run	the	previous	function	on	
words.txt	we	will	notice	that	there	are	still	blank	lines	as	some	of	them	have	spaces.

We	can	modify	the	example	again	to	work	in	these	cases	using	the	string	method	
strip.	strip	returns	a	copy	of	the	string	with	all	whitespace	removed	from	the
beginning	and	end	of	the	string.	If	the	string	incorporates	only	whitespace	then	an
empty	string	is	returned.

def	all_caps_no_blanks(in_filename,	out_filename)	:
				"""Changes	every	character	in	'in_filename'	to	all	caps,	
							removes	blank	lines	and	saves	to	'out_filename'.

				Parameters:
								in_filename	(string):	Name	of	the	file	from	which	to	read	the	data.
								out_filename	(string):	Name	of	the	file	to	which	the	data	is	to	be	saved.

				Preconditions:
								The	files	can	be	opened	for	reading	and	writing.
				"""
				fin	=	open(in_filename,	'r')
				fout	=	open(out_filename,	'w')
				for	line	in	fin	:
								if	line.strip()	:
												fout.write(line.upper())
				fin.close()
				fout.close()

Now	if	we	run	all_caps_no_blanks2.py	on	our	words.txt	file	and	words_allcaps_nb.txt	then
it	should	be	capitalised	with	no	blank	lines.

Notice	how	the	if	statement	is	simply	if	line.strip().	This	is	because	the	boolean
representation	of	an	empty	string	is	False	while	a	string	with	anything	in	it	is	True.	The
same	can	be	said	for	objects	such	as	lists,	tuples	and	more.

>>>	bool('')
False
>>>	bool('	')
True
>>>	bool('sfg')
True
>>>	bool([])
False
>>>	bool([0])
True
>>>	bool([2,5,6,3])

True
>>>	bool(())
False
>>>	bool((2,3,4))
True

We	interrupt	this	film	to	apologise	for	this	unwarranted	attack	by	the
supporting	feature.

Luckily,	we	have	been	prepared	for	this	eventuality,	and	are	now	taking
steps	to	remedy	it.

Sudoku	Example
We	are	now	going	to	have	a	look	at	an	example	that	will	incorporate	list	and	file
processing.	This	example	will	be	of	a	Sudoku	game	stored	in	the	file	sgame.txt.	The
pretty-printed	form	of	this	game	is	sgame.pdf.

The	first	step	is	to	write	a	function	that	takes	the	name	of	a	file	that	contains	a
Sudoku	game	and	returns	a	representation	of	the	game.	The	data	structure	we	use	to
store	the	game	is	a	list	of	lists	—	the	entries	are	rows	and	each	entry	in	a	row
represents	a	column	entry	of	the	row.	To	do	this	we	also	write	a	function	to	turn	a
string	representing	a	row	into	a	row.

def	row2list(row_string)	:
				"""Convert	a	string	representing	a	row	in	a	Sudoku	game	into	a	list.

				Parameters:
								row_string	(string):	Represents	a	single	row	in	a	Sudoku	game.

				Return:
								list<string>:	Containing	the	numbers	in	a	row	of	a	Sudoku	game.

				Preconditions:
								Numbers	in	'row_string'	are	single	digits
								and	there	is	a	single	space	separating	the	numbers.
				"""
				row	=	[]
				for	i	in	range(0,	18,	2)	:
								row.append(row_string[i])
				return	row

This	function	initialises	an	empty	list	for	collecting	the	row	entries.	Then	uses	a	for
loop	with	range	that	goes	through	every	second	number,	up	to	but	not	including	18.	As
each	entry	is	a	space	apart	in	the	string	we	only	want	every	second	character	in	that
string.	The	character	at	each	entry	position	is	then	appended	into	the	row	list.

def	read_game(filename)	:
				"""Read	the	data	for	a	Sudoku	game	from	'filename'.

				Parameters:
								filename	(string):	Name	of	the	file	from	which	to	read	the	game	data.

				Return:
								list<list<string>>:	Representation	of	a	Sudoku	game	as	a	matrix
																												(list	of	lists)	of	strings.

				Preconditions:
								The	files	can	be	opened	for	reading	and	writing.
								File	contains	9	lines	and	each	line	represents	one	row	of	the	game.
				"""
				file	=	open(filename,	'r')
				game	=	[]
				for	line	in	file	:
								game.append(row2list(line))
				file.close()
				return	game

This	function	opens	the	file	in	universal	read	mode	and	then	initialises	an	empty	list
representing	the	game	data	structure.	Then	for	every	line	in	the	file	the	row2list
function	is	called	on	the	line	to	get	the	row	list.	That	row	list	is	then	appended	to	the	
game	list	to	create	the	full	game.

Our	code	currently	looks	like	sudoku1.py.	A	couple	of	tests	of	the	functions	are	below.

>>>	row2list('1	2	3	4	5	6	7	8	9')
['1',	'2',	'3',	'4',	'5',	'6',	'7',	'8',	'9']
>>>	row2list('1	2			4	5	6	7	8		')
['1',	'2',	'	',	'4',	'5',	'6',	'7',	'8',	'	']
>>>	for	i	in	read_game('sgame.txt'):
								print(i)
								
['	',	'	',	'1',	'	',	'	',	'	',	'	',	'9',	'	']
['7',	'	',	'	',	'1',	'	',	'3',	'	',	'5',	'	']
['	',	'	',	'	',	'	',	'9',	'8',	'1',	'	',	'6']
['	',	'9',	'	',	'	',	'4',	'	',	'	',	'	',	'	']
['	',	'8',	'4',	'	',	'	',	'	',	'6',	'1',	'	']
['	',	'	',	'	',	'	',	'5',	'	',	'	',	'2',	'	']
['6',	'	',	'5',	'9',	'3',	'	',	'	',	'	',	'	']
['	',	'7',	'	',	'4',	'	',	'2',	'	',	'	',	'1']
['	',	'2',	'	',	'	',	'	',	'	',	'3',	'	',	'	']
>>>

Now	we	need	functions	to	extract	a	given	row,	column	or	3x3	block.	Adding	the
following	functions	to	our	code	will	give	us	this	functionality.	Keep	in	mind	that	the
game	data	structure	can	be	thought	of	as	a	2-dimensional	matrix.

def	get_row(row,	game)	:
				"""Return	the	indicated	'row'	from	'game'.

				Parameters:
								row	(int):	Index	of	the	row	to	extract	from	'game'.
								game	(list<list<string>>):	Matrix	representation	of	the	Sudoku	game	grid.
								
				Return:
								list<string>:	The	numbers	in	a	row	of	a	Sudoku	game.

				Preconditions:
								0	<=	'row'	<=	8
								'game'	is	a	list	representation	of	a	Sudoku	game.
				"""
				return	game[row]

This	function	simply	needs	to	return	the	rowth	index	of	game	as	game	is	a	list	of	rows.

def	get_column(col,	game)	:
				"""Return	the	column	indicated	by	'col'	from	'game'.

				Parameters:
								col	(int):	Index	of	the	column	to	extract	from	'game'.
								game	(list<list<string>>):	Matrix	representation	of	the	Sudoku	game	grid.
								
				Return:
								list<string>:	The	numbers	in	a	column	of	a	Sudoku	game.

				Preconditions:
								0	<=	'col'	<=	8
								'game'	is	a	list	representation	of	a	Sudoku	game.
			"""
				column	=	[]
				for	row	in	game	:
								column.append(row[col])
				return	column

This	is	a	bit	more	tricky	than	get_row	as	we	do	not	have	a	list	of	columns.	Therefore,
the	function	needs	to	go	through	every	row	and	collect	the	values	at	the	column	index
of	the	row.

def	get_block(row,	col,	game)	:
				"""Return	the	3x3	block	starting	at	index	[row,	col]	from	'game'.

				Parameters:
								row	(int):	Row	index	of	the	start	of	the	block	to	extract	from	'game'.
								col	(int):	Column	index	of	the	start	of	the	block	to	extract	from	'game'.
								game	(list<list<string>>):	Matrix	representation	of	the	Sudoku	game	grid.
								
				Return:
								list<string>:	The	numbers	in	a	3x3	block	of	a	Sudoku	game.

				Preconditions:
								0	<=	r	<	3	and	0	<=	c	<	3
								'game'	is	a	list	representation	of	a	Sudoku	game.
				"""
				block	=	[]
				for	block_row	in	range(3*row,	3*row+3)	:
								block.extend(game[block_row][3*col:3*col+3])
				return	block

This	function	is	even	more	complicated.	We	need	to	be	able	to	get	a	3x3	block,
therefore	we	need	to	get	three	adjacent	rows	and	the	three	adjacent	entries	from
each	of	those	rows.	The	for	loop	gets	the	rows	using	range	to	generate	indices	that
correspond	to	the	block	required.	The	3*row	is	used	as	the	block	rows	are	numbered	0,
1	or	2	down	the	game	data	structure.	This	moves	the	start	index	to	the	required
starting	row	of	the	board	that	corresponds	to	the	start	of	that	block.	The	end	row	is
simply	3	more	rows	down.	As	game	is	a	list	of	lists	representing	rows	it	can	be	directly
indexed	to	get	the	row	of	interest.	Then	slicing	can	be	used	on	that	row	to	get	the	3
adjacent	columns.	This	is	done	using	the	same	system	as	obtaining	the	rows.	The	
extend	method	of	lists	modifies	the	list	it	is	called	on	by	joining	the	list	in	its	argument
to	the	first	list	to	form	one	list.

Our	Sudoku	code	now	looks	like	sudoku2.py.	Here	are	some	tests	of	the	functions	that
we	have	just	written.

>>>	game	=	read_game('sgame.txt')
>>>	get_row(1,	game)
['7',	'	',	'	',	'1',	'	',	'3',	'	',	'5',	'	']
>>>	get_column(0,	game)
['	',	'7',	'	',	'	',	'	',	'	',	'6',	'	',	'	']
>>>	get_block(1,	2,	game)
['	',	'	',	'	',	'6',	'1',	'	',	'	',	'2',	'	']
>>>

To	finish	off	this	problem	we	look	at	the	problem	of	determining	what	possible	values
can	be	put	in	an	empty	square.	To	do	this,	we	need	to	determine	what	are	the
possibilities	based	on	entries	already	in	a	given	row,	column	or	block.	This	can	be
done	by	finding	the	difference	between	the	given	entries	and	the	valid	entries.	Below
are	the	functions	that	will	allow	us	to	do	this.

def	list_diff(list1,	list2)	:
				"""Return	the	list	of	entries	in	list1	that	are	not	in	list2	(list1	-	list2).

				A	general-purpose	list	function	that	works	for	lists	of	any	type	of	elements.
				"""
				diff	=	[]
				for	element	in	list1	:
								if	element	not	in	list2	:
												diff.append(element)
				return	diff

This	function	creates	an	empty	result	list,	diff.	The	function	then	goes	through	every	
element	in	list1	and	checks	if	it	is	in	list2.	If	element	is	not	in	list2	then	element	is
appended	to	our	result	list	diff.

#	all	the	valid	choices
ALL_CHOICES	=	['1',	'2',	'3',	'4',	'5',	'6',	'7',	'8',	'9']

def	choices(row,	column,	game)	:
				"""Return	choices	that	are	possible	at	position	indicated	by	[row,	column].

				Identify	and	return	all	the	choices	that	are	possible	at	position	
				[row,	column]	in	'game'	-	i.e.	each	choice	should	not	occur	in	the	
				indicated	'row',	'column'	or	in	the	block	containing	this	position.

				Parameters:
								row	(int):	Row	index	of	the	position	to	check.
								column	(int):	Column	index	of	the	position	to	check.
								game	(list<list<string>>):	Matrix	representation	of	the	Sudoku	game	grid.
								
				Return:
								list<string>:	The	valid	choices	at	this	position.

				Preconditions:
								0	<=	row	<=	8	and	0	<=	column	<=	8		game[row][column]	==	'	'
				"""
				block_row	=	row	/	3
				block_col	=	column	/	3
				choices	=	list_diff(ALL_CHOICES,	get_row(row,	game))
				choices	=	list_diff(choices,	get_column(column,	game))
				choices	=	list_diff(choices,	get_block(block_row,	block_col,	game))
				return	choices

This	function	starts	by	finding	the	block	that	the	coordinate	[row,	column]	is	in	and
setting	this	to	block_row	and	block_col.	Then	it	finds	all	the	choices	for	the	row	by
calling	list_diff	with	the	list	ALL_CHOICES	and	the	list	obtained	from	get_row	as
arguments.	Then	choices	is	updated	by	passing	it	into	list_diff	along	with	the	result
from	get_column	and	assigning	the	result	back	into	choices,	this	removes	all	the	non-
possible	choices	from	the	column	from	the	choices	list.	This	is	again	done	with	the
block.	This	then	leaves	all	the	choices	available	for	that	square	so	choices	is	returned.

Finally,	our	sudoku	code	looks	like	sudoku.py.	Here	results	of	some	tests	of	the	last	few
function	we	wrote.

>>>	list_diff(ALL_CHOICES,	get_row(0,	game))
['2',	'3',	'4',	'5',	'6',	'7',	'8']
>>>	list_diff(ALL_CHOICES,	get_column(0,	game))
['1',	'2',	'3',	'4',	'5',	'8',	'9']
>>>	list_diff(ALL_CHOICES,	get_block(0,	0,	game))
['2',	'3',	'4',	'5',	'6',	'8',	'9']
>>>	list_intersection(['2',	'3',	'4',	'5',	'6',	'7',	'8'],
																						['1',	'2',	'3',	'4',	'5',	'8',	'9'])
['2',	'3',	'4',	'5',	'8']
>>>	choices(0,	0,	game)
['2',	'3',	'4',	'5',	'8']
>>>

My	hovercraft	is	full	of	eels

Error	Handling
We	have	seen	many	errors	that	the	interpreter	has	produced	when	we	have	done
something	wrong.	In	this	case,	we	say	that	the	interpreter	has	raised	an	error.	A
typical	example	is	when	we	wish	to	use	user	input.	We	cannot	guarantee	that	the	user
will	input	values	correctly.	If	we	are	not	careful,	user	input	might	cause	an	error.
When	this	happens,	we	want	to	be	able	to	catch	the	error	(Exception)	and	deal	with	it
ourselves	(users	do	not	like	to	see	red).

To	be	able	to	do	this	we	surround	the	code	that	is	likely	to	raise	an	error	in	a	try,	
except	statement.	The	following	gives	a	couple	of	examples	of	error	handling	on	the	
int	function	that	attempts	to	convert	user	input	into	an	integer.	To	do	this	we	shall
write	a	small	function	definition	as	follows.

def	int_exception()	:
				"""Asks	for	user	input	and	attempts	to	convert	it	into	an	integer.

				Returns:
								int:	Integer	value	entered	by	user;
													or	-1	if	they	did	not	enter	an	integer.
				"""
				num	=	input("Enter	a	number:	")
				try	:
								return	int(num)
				except	Exception	:
								print("{0}	is	not	a	number".format(num))
								return	-1

This	function	simply	asks	the	user	for	a	number.	It	then	attempts	to	convert	the	input
into	an	int	and	return	it.	See	how	the	return	int(num)	is	inside	a	try	statement	and

followed	by	an	except	Exception	statement.	This	is	how	the	exception	is	caught.	If	the
block	of	code	between	the	try	and	except	lines	raises	an	exception	then	the	rest	of	the
block	is	not	executed	and	the	code	after	the	except	line	is	executed	instead.	In	this
case,	we	print	a	short	message	and	return	-1.	Saving	the	file	as	int_exception.py	we
can	perform	a	couple	of	test	as	below.

>>>	int('10')
10
>>>	int_exception()
Enter	a	number:	10
10
>>>	int('ten')

Traceback	(most	recent	call	last):
		File	"<pyshell#4>",	line	1,	in	<module>
				int('ten')
ValueError:	invalid	literal	for	int()	with	base	10:	'ten'
>>>	int_exception()
Enter	a	number:	ten
'ten	is	not	a	number'
-1

The	first	example	simply	shows	that	the	string	'10'	can	be	turned	into	an	integer.	The
next	example	shows	our	function	and	we	give	10	as	user	input	and	see	that	it	returns
10.	The	next	example	shows	then	the	string	'ten'	raises	an	error	as	it	cannot	be
converted	into	a	string.	We	then	run	our	function	again	and	see	that	we	do	not	get	the
error	but	instead	get	the	message	'ten	is	not	a	number'	and	-1	is	returned.	Note	how
we	used	except	Exception,	this	catches	any	error	that	happens.	It	is	OK	to	do	this	in
this	case	as	there	are	not	many	other	ways	this	code	can	raise	an	error.	It	is	not
always	good	practice	to	do	this,	especially	in	complex	code.	Sometimes	we	end	up
catching	errors	raised	by	mistakes	in	our	code,	not	the	user	input.	It	would	therefore,
be	better	to	state	the	exception	we	want	to	catch	rather	than	the	“catch	all”	Exception.

Exception	Handling	Syntax

<div	class="language-python	highlighter-rouge"><div	class="highlight"><pre	
class="highlight"><code>try	:
body1	except	<span	
class="n">ExceptionName	:
body2	</code></pre></div>				</div>

Semantics

Exception	handling	starts	with	a	try	statement	followed	by	a	colon.	Then	on	a
new	line,	and	indented,	is	body1,	this	is	the	body	of	code	that	is	to	be	tested	for
exceptions.	This	is	followed,	on	a	new,	de-dented	line,	by	an	except	statement
followed	by	the	ExceptionName	that	is	to	be	caught,	which	is	followed	by	a	colon.
On	a	new	line,	and	indented,	is	body2,	this	is	the	body	of	code	to	be	run	when	the
exception	is	caught.	If	all	errors	are	to	be	caught	then	the	ExceptionName	to	use	is
Exception.

Using	the	Exception

It	is	possible	to	store	the	exception	caught	so	that	information	is	able	to	be	extracted
for	use.	This	is	done	using	as.	To	demonstrate	this	we	are	going	to	modify	our	code
from	above	to	look	like	the	function	definition	below.

def	int_exception(in_num)	:
				"""Asks	user	for	a	number	and	divides	'in_num'	by	the	input.

				Parameters:
								in_num	(int):	Number	to	be	divided	by	user	input.

				Returns:
								float:	'in_num'	divided	by	the	number	entered	by	the	user;
															or	-1	if	input	is	not	an	integer	or	if	input	is	0.
				"""
				num	=	input("Enter	a	number:	")
				try	:
								num	=	int(num)
								return	in_num	/	num
				except	Exception	as	e	:
								print("Error:	{0}".format(str(e)))
								return	-1

The	function	now	takes	a	number	argument.	It	still	asks	the	user	for	a	number.	The
number	from	the	argument	is	then	divided	by	the	number	given	by	the	user	and
returned.	If	an	error	is	raised	then	it	is	caught	and	assigned	to	e.	An	error	message	is
then	returned	including	the	string	representation	of	the	error.	Saving	the	file	as	
int_exception2.py	we	can	perform	a	couple	of	test	as	below.

>>>	int_exception(15)
Enter	a	number:	10
1.5
>>>	int_exception(15)
Enter	a	number:	ten
Error:	Invalid	literal	for	int()	with	base	10:	'ten'
-1
>>>	int_exception(15)
Enter	a	number:	0
Error:	division	by	zero
-1

The	first	example	works	as	expected,	the	function	returns	1.5.	The	next	two	examples
show	the	function	outputting	an	error	message;	the	first	being	'Error:	could	not	
convert	string	to	float:	ten'	from	a	ValueError,	which	is	from	attempting	to	float	a	non
numerical	string	from	the	input	and	the	other	is	'Error:	float	division	by	zero'	from	a	
ZeroDivisionError,	which	happens	if	0	is	input	(we	can	not	divide	by	zero).

Exception	Handling	Syntax

<div	class="language-python	highlighter-rouge"><div	class="highlight"><pre	
class="highlight"><code>try	:
body1	except	<span	
class="n">ExceptionName	as	<span	
class="n">var	:
body2	</code></pre></div>				</div>

Semantics

This	works	the	same	as	using	just	try	and	except.	The	difference	is	that	the
exception,	ExceptionName,	is	assigned	to	the	variable	var.

Catching	Different	Exceptions

We	have	seen	that	it	is	possible	to	catch	every	error	raised	and	that	we	can	get
information	about	the	error.	So	how	do	we	catch	a	specific	error	that	we	know	is
possible	from	incorrect	input?	It	is	possible	to	specify	what	errors	we	want	to	catch
and	deal	with.	This	way	we	only	catch	the	errors	that	are	caused	by	incorrect	input,
rather	than	everything	and	miss	the	errors	raised	by	any	incorrect	code.

To	demonstrate	this	let’s	look	at	the	function	definition	below:

def	get_numbers(dividend)	:
				"""Asks	the	user	repeatedly	for	numbers	and	calculates	'dividend'	
				divided	by	each	number.

				Results	of	division	are	stored	in	a	list.
				The	list	is	returned	if	nothing	is	entered.

				Parameters:
								dividend	(int):	Number	to	be	divided	by	the	numbers	entered	by	user.

				Return:
								list<float>:	List	of	dividend	divided	by	each	input	number.
				"""
				results	=	[]
				while	True	:
								num	=	input("Enter	Number:	")
								if	not	num	:
												break
								try	:
												num	=	float(num)
												results.append(dividend	/	num)
								except	ValueError	:
												print("That	is	not	a	number")
								except	ZeroDivisionError	:
												print("Can't	divide	by	zero")
				return	results

This	function	takes	a	number	as	an	argument.	It	then	repeatedly	asks	for	user	input
with	input.	If	there	is	nothing	typed	then	the	while	loop	breaks.	If	something	is	typed
then	it	attempts	to	convert	the	input	to	a	float	and	then	attempts	to	divide	the
argument	number	by	the	input	number,	appending	it	to	the	list.	It	checks	for	two
different	errors,	ValueError	and	ZeroDivisionError	In	both	cases	a	simple	message	is
printed	to	tell	the	user	that	they	have	given	wrong	input.

After	saving	the	file	as	get_numbers.py	we	can	run	a	few	tests.

>>>	get_numbers(10)
Enter	Number:	2
Enter	Number:	a
That	is	not	a	number

Enter	Number:	4
Enter	Number:	0
Can't	divide	by	zero
Enter	Number:	3.5
Enter	Number:	
[5.0,	2.5,	2.857142857142857]

It	can	be	seen	in	this	example	that	if	non	numerical	inputs	are	given	then	we	get	That	
is	not	a	number.	If	0	is	input	then	the	message	is	Can’t	divide	by	zero.	Any	numerical
based	inputs	in	this	test	work.

Exception	Handling	Syntax

<div	class="language-python	highlighter-rouge"><div	class="highlight"><pre	
class="highlight"><code>try	:
body1	except	<span	
class="n">ExceptionName1	:
body2	.	.
	.	except	<span	
class="n">ExceptionNameN	:
bodyn	</code></pre></div>				</div>

Semantics

This	starts	the	same	as	exception	handling	only	there	are	repeated	except
statements	for	every	error	that	is	to	be	caught.

Multiple	except	statements	can	have	a	combination	of	assigning	the	exception	to
a	variable	or	not.

Dealing	with	Unknown	Exceptions

Sometimes	we	need	to	be	prepared	for	any	exception	that	may	happen.	We	have	seen
a	way	of	dealing	with	this	in	the	first	couple	of	exception	handling	examples	with	
except	Exception.	However,	sometimes	there	are	errors	that	we	wish	to	deal	with
specially	and	just	have	a	single	case	for	any	other	exception	that	may	occur.	We	can
modify	the	function	definition	above	to	be	able	to	demonstrate	this.

def	get_numbers(dividend)	:
				""Asks	the	user	repeatedly	for	numbers	and	calculates	'dividend'	
				divided	by	each	number.

				Results	of	division	are	stored	in	a	list.
				The	list	is	returned	if	nothing	is	entered.

				Parameters:
								dividend	(int):	Number	to	be	divided	by	the	numbers	entered	by	user.

				Return:
								list<float>:	List	of	dividend	divided	by	each	input	number.
				"""
				results	=	[]
				while	True	:

								num	=	input("Enter	Number:	")
								if	not	num	:
												break
								try	:
												num	=	float(num)
												results.append(dividend	/	num)
								except	ValueError	:
												print("That	is	not	a	number")
								except	ZeroDivisionError	:
												print("Can't	divide	by	zero")
								except	Exception	as	e	:
												print("Unknown	Error	{0}".format(str(e)))
												return	[]
				return	results

This	function	definition	is	the	same	except	that	we	have	added	an	extra	except
statement.	This	except	statement	is	another	except	Exception	like	we	have	seen	before.
The	way	this	function	now	works	is,	if	a	ValueError	or	ZeroDivisionError	error	occurs
then	it	will	behave	the	same	as	the	previous	example.	If	any	other	exception	occurs
then	the	last	except	statement	will	catch	it	and	print	out	an	error	message	and	return
an	empty	list.

Saving	now	as	get_numbers2.py	we	can	test	the	function.

>>>	get_numbers(10)
Enter	Number:	2
Enter	Number:	f
That	is	not	a	number
Enter	Number:	0
Can't	divide	by	zero
Enter	Number:	
[5.0]
>>>	get_numbers("g")
Enter	Number:	2
Unknown	Error:	unsupported	operand	type(s)	for	/:	'str'	and	'float'
[]

The	first	few	examples	are	as	before.	The	last	example	is	an	example	of	the	new
functionality.	The	function	itself	was	given	a	string	argument	when	it	was	meant	to	be
given	numbers	only.	This	created	a	different	exception	when	we	attempted	to	divide	a
string	by	a	number.	Therefore,	our	function	prints	an	error	message	and	returns	an
empty	list.

Raising	Exceptions
There	are	many	situations	where	we	might	want	an	error	to	occur.	If	a	function
receives	incorrect	input,	or	some	other	invalid	action	occurs,	it	is	better	to	let	the
function	raise	an	exception,	which	forces	another	part	of	the	code	deal	with	the
problem	(by	using	try-except	statements).	As	an	example,	we	will	revisit	the	prime
numbers	example	from	earlier.	To	test	if	a	number	is	prime,	we	wrote	this	function:

def	is_prime(num)	:
				"""Returns	True	iff	'num'	is	prime.

				Parameters:
								num	(int):	Integer	value	to	be	tested	to	see	if	it	is	prime.

file:///github/workspace/reading/2B0_functional_decomposition

				Return:
								bool:	True	if	'num'	is	prime.	False	otherwise.

				Preconditions:
								num	>	1
				"""
				i	=	2
				while	i	<	num	:
								if	num	%	i	==	0	:
												return	False
								i	=	i	+	1
				return	True

We	discussed	that	the	precondition	n	>	1	means	that	inputs	which	don’t	fit	this
criteria	could	have	unknown	consequences.	This	function	would	return	True	if	the
input	was	invalid,	and	it	would	be	the	user’s	responsibility	to	check	that	the	input	was
valid.	If	the	user	doesn’t	do	this,	there	could	be	more	disastrous	consequences	later	in
the	program.	We	will	modify	the	function	to	raise	an	error	when	the	input	is	invalid;
this	will	make	sure	any	mistakes	don’t	quietly	pass	by.

Different	types	of	exception	in	Python	serve	different	purposes.	For	example,	we	use	
ValueError	to	represent	an	inappropriate	value	(for	example,	if	n	<=	1),	and	TypeError	to
represent	an	input	of	the	wrong	type	(for	example,	a	float).

def	is_prime(num)	:
				"""Returns	True	iff	'num'	is	prime.

				Parameters:
								num	(int):	Integer	value	to	be	tested	to	see	if	it	is	prime.

				Return:
								bool:	True	if	'num'	is	prime.	False	otherwise.

				Preconditions:
								num	>	1
				"""
				if	num	<=	1	:
								raise	ValueError("Input	must	be	>	1")
				if	num	!=	int(num)	:
								raise	TypeError("Input	must	be	an	integer")

				i	=	2
				while	i	<	num	:
								if	num	%	i	==	0	:
												return	False
								i	=	i	+	1
				return	True

When	we	test	the	function	on	incorrect	inputs,	we	see	the	function	raises	the
appropriate	errors:

>>>	is_prime(-2)
Traceback	(most	recent	call	last):
		File	"<pyshell#0>",	line	1,	in	<module>
				is_prime(-2)
		File	"is_prime.py",	line	9,	in	is_prime
				raise	ValueError("Input	must	be	>	1")
ValueError:	Input	must	be	>	1
>>>	is_prime(3.14)

Traceback	(most	recent	call	last):
		File	"<pyshell#1>",	line	1,	in	<module>
				is_prime(3.14)
		File	"is_prime.py",	line	11,	in	is_prime
				raise	TypeError("Input	must	be	an	integer")
TypeError:	Input	must	be	an	integer

raise	Syntax

<div	class="language-python	highlighter-rouge"><div	class="highlight"><pre	
class="highlight"><code>raise	<span	
class="n">ExceptionName(<span	
class="n">args)	</code></pre></div>				</div>

Semantics

The	raise	statement	will	cause	an	exception	to	be	raised.	If	the	raise	statement
is	inside	a	try	block,	the	interpreter	will	look	for	the	appropriate	except	block	to
execute.	Otherwise,	the	function	will	exit	immediately,	and	the	exception	will
propagate,	exiting	functions	until	it	finds	a	try-except	block.	If	there	is	no
appropriate	try-except	block	to	handle	the	exception,	the	program	will	exit,	and
the	Python	interpreter	will	display	an	error	message	(Traceback	(most	recent	call	
last):...)

The	ExceptionName	should	be	a	type	of	exception	which	is	appropriate	to	the
situation.	The	args	can	be	any	number	of	arguments,	but	is	often	a	message	to
describe	what	caused	the	exception.

raise	statements	are	useful	in	the	body	of	an	if	statement	which	checks	if	a
value	is	invalid.

Listen.	Strange	women	lying	in	ponds	distributing	swords	is	no	basis	for	a
system	of	government.

Supreme	executive	power	derives	from	a	mandate	from	the	masses,

not	from	some	farcical	aquatic	ceremony.

Variable	Scope
Now	that	we	have	written	some	programs	we	should	describe	how	Python	keeps	track
of	all	the	variables	in	our	programs	—	what	values	they	have,	and	which	variable	are
being	talked	about	at	a	specific	point	in	our	programs.	This	is	an	issue	in	every
programming	language	and	is	typically	managed	by	using	environments	(a	data
structure)	to	maintain	information	about	the	variables	and	values	that	can	be
accessed	in	a	particular	part	of	a	program	(program	scope)	such	as	a	function	body.
The	scope	of	a	variable	describes	where	in	a	program	a	particular	variable	can	be
used.

Python	uses	dictionaries	for	its	environments	—	each	dictionary	maintains	the
mapping	from	variable	names	to	values.	Python	uses	the	term	namespace	to	refer	to
these	dictionaries.	There	is	one	global	namespace	that	keeps	information	about

everything	at	the	‘global’	level.	When	each	function	is	called	a	new	local	namespace
is	constructed	to	keep	track	of	variables	inside	the	function.	Python	comes	with	two
functions	that	extract	the	global	and	(current)	local	namespaces:	globals()	and	
locals().	Below	is	some	code	and	some	results	of	running	the	code	that	gives	an
insight	into	how	Python	keeps	track	of	variables.

>>>	a	=	10
>>>	b	=	11
>>>	def	foo(b)	:
				print('Global	namespace	=	',	globals())
				print('Local	namespace	=	',	locals())
				return	a	+	b

>>>	foo(3)
Global	namespace	=		{'__loader__':	<class	'_frozen_importlib.BuiltinImporter'>,	
'foo':	<function	foo	at	0x7f2cb35f58c8>,	'__builtins__':	<module	'builtins'	(built-
in)>,	
'__spec__':	None,	'__package__':	None,	'__doc__':	None,
'__name__':	'__main__',	'b':	11,	'a':	10}
Local	namespace	=		{'b':	3}
13
>>>	

We	can	see	that	variables	a	and	b	are	defined	in	the	global	namespace	and	b	is	also
defined	in	the	local	namespace	of	foo.	So,	why	is	the	value	of	foo(3)	equal	to	13?
Python	first	looks	in	the	local	namespace	to	see	if	a	given	variable	is	defined	there.	If
so,	it	uses	the	corresponding	value.	If	not	it	looks	in	the	global	namespace	for	a	value.
If	the	variable	is	not	in	the	global	namespace	we	get	a	familiar	error	message.	In	the
case	above,	b	is	defined	in	the	local	namespace	and	its	value	(3)	is	used.	The	variable	
a	is	not	defined	in	the	local	namespace	so	Python	looks	in	the	global	namespace,
getting	the	value	10.

Compare	the	above	example	with	the	following.

>>>	a	=	10
>>>	b	=	11
>>>	def	foo(b)	:
								a	=	a	+	3
								return	a	+	b

>>>	foo(3)

Traceback	(most	recent	call	last):
		File	"<pyshell#58>",	line	1,	in	<module>
				foo(3)
		File	"<pyshell#57>",	line	2,	in	foo
				a	=	a	+	3
UnboundLocalError:	local	variable	'a'	referenced	before	assignment
>>>	

In	this	case	we	are	trying	to	modify	a	global	variable	(i.e.	one	not	in	the	local	scope).
Python	sees	this	assignment	as	follows	—	on	the	left	hand	side	is	a	and	so	Python
treats	this	as	a	local	variable.	On	the	right	hand	side	is	an	occurrence	of	a,	but	it	has
not	been	given	a	value	in	the	local	scope	and	so	our	favorite	error	is	produced.

It	is	possible	to	modify	global	variables	as	the	following	example	shows.

>>>	a	=	10
>>>	b	=	11
>>>	def	foo(b):
				global	a
				a	=	a	+	3
				return	a	+	b

>>>	foo(3)
16
>>>	foo(3)
19
>>>	

global	and	why	not

The	global	declaration	tells	Python	to	treat	a	as	a	global	variable.	This	is	a	very
dangerous	thing	to	do	and	should	be	avoided	where	possible.	Using	global
variables	makes	it	difficult	to	understand	the	logic	of	programs	—	in	the
previous	example,	we	call	foo	twice	with	the	same	argument	but	get	different
results.

The	architects	themselves	came	in	to	explain	the	advantages	of	both
designs.

Class	Design
In	the	previous	sections,	we	have	used	existing	classes	(e.g.	str	and	list)	that	enable
us	to	be	able	to	write	functions	and	programs	that	do	what	we	wish.	In	this	section,
we	will	begin	to	design	our	own	classes.	Being	able	to	write	our	own	classes	is	a
useful	tool	as	not	everything	is	in	a	format	that	we	like	or	will	find	easy	to	use	for	a
particular	program	that	we	may	wish	to	write.	We	will	start	with	the	design	of	a
simple	ADT	for	a	2D	point	(an	x	and	y	coordinate).

2D	Point	Class
For	our	first	example	will	we	write	the	class	definition	for	a	2D	point.	This	class	will
require	a	constructor	(to	be	able	to	create	instances	of	the	class),	a	couple	of
accessors	that	get	the	x,	y	coordinate	of	the	point	and	a	mutator	to	move	the	point	by
a	certain	distance.	The	class	definition	is	as	follows.	Below,	we	will	discuss	this
definition	in	detail.

import	math

class	Point(object)	:
				"""A	2D	point	ADT	using	Cartesian	coordinates."""

				def	__init__(self,	x,	y)	:
								"""Construct	a	point	object	based	on	(x,	y)	coordinates.
								
								Parameters:
												x	(float):	x	coordinate	in	a	2D	cartesian	grid.
												y	(float):	y	coordinate	in	a	2D	cartesian	grid.
								"""
								self._x	=	x

								self._y	=	y

				def	x(self)	:
								"""(float)	Return	the	x	coordinate	of	the	point."""
								return	self._x

				def	y(self)	:
								"""(float)	Return	the	y	coordinate	of	the	point."""
								return	self._y

				def	move(self,	dx,	dy)	:
								"""Move	the	point	by	(dx,	dy).

								Parameters:
												dx	(float):	Amount	to	move	in	the	x	direction.
												dy	(float):	Amount	to	move	in	the	y	direction.
								"""
								self._x	+=	dx
								self._y	+=	dy

Class	definitions	start	with	the	keyword	class,	followed	by	the	class	name,	and	
(object):.	Following	this,	and	indented,	is	what	looks	like	function	definitions.	These
are	the	method	definitions	for	the	class.	Notice	the	first	argument	of	each	method
is	self:	self	is	a	reference	to	the	object	itself.	This	argument	is	needed	so	that	the
method	can	access	and	modify	components	of	the	object.	Class	names,	like	function
names,	follow	a	naming	convention.	This	convention	is	that	the	first	letter	of	each
word	in	the	class	name	is	a	capital	letter.	Methods	follow	the	same	naming	convention
as	functions.

Class	Definition	Syntax

<div	class="language-python	highlighter-rouge"><div	class="highlight"><pre	
class="highlight"><code>class	<span	
class="nc">ClassName(<span	
class="nb">object)	:
"""Comment"""

def	method_1
(self,	
[args])	<span	
class="p">:
				method_1_body

def	method_2
(self,	
[args])	<span	
class="p">:
				method_2_body

...	</code></pre></div>				</div>

Semantics

Creates	a	class	called	ClassName	to	represent	the	ADT	specified.	The	methods	of
the	class	are	method_1,	method_2,	and	so	on.	Each	method	must	have	a	parameter	
self	to	represent	the	instance	that	is	performing	the	method,	optionally
followed	by	any	other	arguments	the	method	requires.	Method	calls	of	the	form	

instance.method(arg1,	arg2,	...)	will	execute	the	body	of	the	definition	of	method
with	the	arguments	instance,	arg1,	arg2,	Note	that	the	value	of	the	self
parameter	is	instance.

Setting	up	a	Point

Earlier	in	the	course,	we	have	used	the	dir	function	to	list	the	methods	of	an	object,
and	saw	that	many	of	the	methods	had	double	underscores	at	the	start	and	end	of
their	names.	These	methods	each	have	a	special	meaning	in	Python,	which	allow	the
object	to	work	with	existing	Python	syntax,	such	as	arithmetic,	slicing,	and	built-in
functions.

The	first	method	that	the	Point	class	has	is	the	__init__	method.	This	is	the
constructor	method	of	the	class,	which	is	executed	when	the	object	is	created.	
__init__	takes	as	arguments	any	data	that	is	to	be	required	to	make	the	instance	of
the	class	and	creates	the	instance	variables	and	any	data	structures	required	for	the
instance	to	function.	In	this	case	__init__	takes	in	the	x,	y	coordinate	of	the	point	and
creates	two	instance	variables,	self._x	and	self._y.	Note	the	self.	at	the	start	of	the
variable	names.	self	is	required	to	access	any	variables	and	methods	of	the	instance,
as	it	is	the	reference	to	the	object	instance.	self._x	and	self._y	are	given	the	values	of	
x	and	y	respectively	from	the	inputs	into	the	constructor	(__init__	method)	of	the	Point
class.

The	underscores	on	the	instance	variables	also	have	an	informal	meaning.	In	object-
oriented	programming	it	is	often	useful	to	have	private	variables	and	methods.	This
is	data	and	methods	that	are	not	meant	to	be	accessed	from	outside	the	class	except
perhaps	via	a	non-private	method.	Python	does	not	have	a	way	of	setting	variables
and	methods	private.	Python	instead	uses	underscores	to	‘hide’	variables	and
methods.	Note:	This	is	simply	a	naming	convention	used	by	programmers	to	signify	to
readers	of	the	code	that	this	variable	or	method	is	meant	to	be	private.	It	is	possible
to	access	these	variables	and	methods	directly	if	the	number	of	underscores	is	know,
though	it	is	not	recommended	in	case	the	class	definition	changes.

The	next	two	methods	(the	x	and	y	methods)	are	our	accessors	—	they	provide	us
with	an	interface	to	access	the	class	instance	variables	from	outside	the	class
definition.	These	methods	simply	return	the	corresponding	coordinate	(either	x	or	y).
The	method	move	is	a	mutator	—	it	modifies	the	data	stored	in	the	object.	Other	than	
self,	move	also	has	the	arguments	dx	and	dy.	These	are	added	to	the	current	self._x	and
self._y,	respectively,	to	‘move’	our	point	along	a	certain	vector	to	a	new	location.

Now	we	can	save	our	code	as	point1.py	and	run	a	few	tests	to	see	it	in	action.

>>>	p	=	Point(2,	-5)
>>>	p
<__main__.Point	object	at	0x011D4710>
>>>	str(p)
'<__main__.Point	object	at	0x011D4710>'
>>>	type(p)
<class	'__main__.Point'>
>>>	p.x()
2
>>>	p.y()
-5
>>>	p.move(-3,	9)
>>>	p.x()
-1
>>>	p.y()
4

The	first	line	creates	an	instance,	p,	of	our	new	Point	class.	When	we	create	a	Point
instance,	we	are	instantiating	the	class.	The	example	shows	a	print	out	of	how
Python	represents	our	Point	class,	while	the	one	after	it	shows	Pythons	string	version
of	our	Point	class.	The	following	example	shows	the	type	of	our	Point	class.	We	then
go	and	call	the	x	and	y	methods	to	view	the	current	state	of	the	class	instance.	We
then	move	our	Point,	p,	and	then	have	a	look	at	the	new	state	of	the	class	instance.

String	Representations

The	second	and	third	examples	above	showed	how	Python	represents	our	Point	class.
The	Python	interpreter	is	using	the	default	methods	for	str	and	repr	for	the	string
representations	of	our	class.	These	are	not	particularly	nice	or	useful	representations
of	this	class	as	it	does	not	tell	us	much	about	the	instance	state.	We	can	make	our
class	have	a	better	representation	by	writing	our	own	__str__	and	__repr__	methods
into	our	class	definition.	These	two	method	names	are	used	to	define	the	behaviour	of
the	built-in	str	and	repr	functions	respectively.	The	following	method	definitions	will
provide	good	__str__	and	__repr__	representations	of	our	Point.

				def	__str__(self)	:
								"""The	'informal'	string	representation	of	the	point."""
								return	'({0},	{1})'.format(self._x,	self._y)

				def	__repr__(self)	:
								"""The	'official'	string	representation	of	the	point."""
								return	'Point({0},	{1})'.format(self._x,	self._y)

The	__str__	and	__repr__	methods	both	use	a	similar	formatted	string	to	produce	a
string	that	is	a	nice	representation	of	our	Point	class.	These	methods	are	used	when
the	functions	str	and	repr,	respectively,	are	used	on	our	Point	class.	__repr__,	ideally,
should	represent	all	the	data	important	to	the	object’s	state	and	to	be	able	to	recreate
the	object	with	that	same	state.	If	possible	we	should	also	make	it	so	that	if	the
interpreter	read	the	repr	string	back	in	and	evaluated	it,	it	would	construct	a	copy	of
the	object.

After	adding	the	above	code	to	the	class	definition	our	class	we	can	now	save	our	
point2.py	code	and	test	our	two	new	methods.

>>>	p	=	Point(-1,	4)
>>>	p
Point(-1,	4)
>>>	str(p)
'(-1,	4)'
>>>	repr(p)
'Point(-1,	4)'

The	first	example	shows	what	Python	now	returns	if	we	simply	ask	for	p.	When
something	is	evaluated	the	interpreter	uses	the	__repr__	method	of	the	class	as	is
shown	in	the	third	example.	The	second	example	shows	the	string	representation	of
our	Point	class.	Notice	that	the	repr	string	looks	just	like	the	line	created	to	make	the
Point	instance	originally.

Arithmetic	on	Points

>>>	Point(1,	3)	==	Point(1,	3)
False
>>>	p1	=	Point(2,	3)
>>>	p2	=	p1
>>>	p1	==	p2
True
>>>	p3	=	Point(2,	3)
>>>	p1	==	p3
False

The	above	examples	show	that	if	we	create	Points	with	the	same	parameters	they	are
not	equal,	even	though	the	share	the	same	state.	This	is	clearly	shown	in	the	first	and
last	example.	These	examples	return	False	as,	even	though	both	objects	have	the	same
state,	they	are	different	instances	of	the	class.	The	second	example	returns	True	as
there	are	two	variables	with	the	same	instance	of	Point	as	their	value.	The	reason	the
interpreter	behaves	this	way	is	because	the	interpreter	is	using	the	default	test	for
equality,	that	objects	are	equal	if	they	are	the	same	instance.

We	would	like	to	define	how	equality	should	work	on	points.	The	method	__eq__	is
used	to	define	the	behaviour	of	the	==	test.	It	would	also	be	useful	if	we	were	able	to
add	two	Points	together.	The	__add__	method	is	used	to	define	addition	of	objects
using	the	+	operator.	The	following	code	contains	the	two	method	definitions	for	
__add__	and	__eq__	which	will	give	us	the	functionality	we	want	when	the	+	or	==
operators	are	used.

				def	__add__(self,	other)	:
								"""Return	a	new	Point	after	adding	this	point	to	'other'.

								Perform	vector	addition	of	the	points	considered	as	vectors.
								point1	+	point2	->	Point

								Parameters:
												other	(Point):	Other	point	to	be	added	to	this	point.

								Return:
												Point:	New	point	object	at	position	of	'self'	+	'other'.
								"""
								return	Point(self._x	+	other.x(),	self._y	+	other.y())

				def	__eq__(self,	other)	:
								"""Return	True	iff	'self'	and	'other'	have	the	same	x	and	y	coords.

								point1	==	point2	->	bool
								
								Parameters:
												other	(Point):	Other	point	to	be	compared	to	this	point.

								Return:
												bool:	True	if	'self'	and	'other'	have	the	same	x	and	y	coords.
																		False	otherwise.
								"""
								return	self._x	==	other.x()	and	self._y	==	other.y()

The	__add__	method	adds	the	two	Points	together	using	vector	addition.	Then	creates	a
new	Point	and	returns	it.	The	__eq__	method	returns	True	if	the	points	have	the	same	x,
y	coordinates,	and	False	otherwise.

Here	are	some	examples	of	these	last	two	methods	after	adding	them	to	the	class

definition	and	saving	the	point3.py	file.

>>>	p1	=	Point(1,	5)
>>>	p2	=	Point(-2,	9)
>>>	p3	=	p1	+	p2
>>>	p3
Point(-1,	14)
>>>	p4	=	Point(-1,	14)
>>>	p3	==	p4
True
>>>	p1	==	p2
False
>>>	p1	+=	p2
>>>	p1	==	p4
True

First	we	create	2	instances	of	the	Point	class.	Then	we	create	a	third	by	adding	the
first	2	together.	After	creating	a	fourth	instance	of	our	Point	class	we	do	a	couple	of
tests	for	equality.	In	the	last	two	examples	we	perform	a	+=	and	then	another	test	to
demonstrate	that	p1	now	equals	p4.

Special	Methods

The	Python	interpreter	recognises	many	special	method	names	to	allow	classes
to	use	built-in	Python	syntax.	Each	of	these	names	begins	and	ends	with	two
underscores.	The	names	Python	recognises	include:	__init__(self,	[arg1,	arg2,	
...])	Constructor,	executed	when	an	instance	of	the	class	is	created.	
__str__(self)	Must	return	a	string	giving	an	“informal”	description	of	the	object.
Executed	when	str(x)	or	print(x)	are	called.	__repr__(self)	Must	return	a	string
giving	a	“formal”,	unambiguous	description	of	the	object.	Executed	when	
repr(x)	is	called,	or	when	>>>	x	is	executed	at	the	prompt.	This	string
representation	is	often	useful	in	debugging.	__add__(self,	other)	__sub__(self,	
other)	__mul__(self,	other)	__div__(self,	other)	Definition	of	addition,
subtraction,	multiplication	and	division.	Equivalent	to	self	+	other,	self	-	other,	
self	*	other,	and	self	/	other	respectively.	__lt__(self,	other)	__le__(self,	other)	
__eq__(self,	other)	__ne__(self,	other)	__gt__(self,	other)	__ge__(self,	other)
Definitions	of	comparison	operators	<,	<=,	==,	!=,	>,	>=	respectively.	For	example,	
x	<=	y	executes	the	method	call	__le__(x,	y).

We	now	consider	extending	this	ADT	by	providing	accessor	methods	for	getting	the
polar	coordinates	of	the	point.	The	polar	coordinates	specify	a	point	by	angle	and
distance	rather	than	x	and	y	coordinates.	The	new	methods	are	given	below.

				def	r(self)	:
								"""(float)	Return	the	distance	of	the	point	from	the	centre	of	the
								coordinate	system	(0,	0).
								"""
								return	math.sqrt(self._x**2	+	self._y**2)

				def	theta(self)	:
								"""(float)	Return	the	angle,	in	radians,	from	the	x-axis	of	the	point."""
								return	math.atan2(self._y,	self._x)

The	r	method	uses	mathematics	we	know	to	calculate	the	radial	position	of	the	Point
from	the	centre	of	our	coordinates.	The	theta	method	uses	the	math	libraries	atan2
method	to	find	the	angle	from	the	x-axis.	atan2	is	more	accurate	than	atan	as	atan2
returns	a	correct	angle	no	matter	what	quadrant	the	point	is	in,	whereas	atan	returns
between	pi/2	and	-pi/2	radians.

After	adding	these	methods	into	the	class	definition	and	saving,	the	file	should	now
look	like	point.py.	We	can	now	look	at	a	few	examples	of	our	last	couple	of	methods.

>>>	p	=	Point(3,	4)
>>>	p.r()
5.0
>>>	p.theta()
0.9272952180016122

The	Abstraction	Barrier

Imagine	we	now	write	some	graphics	program	that	uses	this	ADT.	Later	we	come
back	and	reconsider	the	implementation	of	the	ADT	and	decide	to	use	polar
coordinates	rather	than	x,	y	coordinates	for	the	internal	representation	of	the	data,
like	the	point_rt.py	file	here.	We	make	sure	that	the	constructor	and	the	method
interfaces	behave	in	the	same	way	as	before	(have	the	same	semantics).	Now	we	go
back	to	our	graphics	program	we	wrote.	Do	we	need	to	change	anything?	No!
Because	we	did	not	change	the	interface,	we	do	not	need	to	change	anything	in	our
graphics	program.	This	is	the	key	point	about	ADTs	—	we	have	completely	separated
the	implementation	from	the	use	of	the	ADT	via	a	well-defined	interface.	We	respect
the	abstraction	barrier!

Note:	if	our	graphics	program	directly	accessed	the	x	and	y	coordinates	instead	of
using	the	interface	then	we	would	be	in	trouble	if	we	changed	over	to	polar
coordinates	—	we	would	have	to	rethink	all	our	uses	of	Point	objects!	This	is	why	we
use	the	“private	variable”	naming	convention	to	signal	that	the	_x	and	_y	values
should	not	be	accessed.

A	Ball	Class
We	now	design	another	class	that	is	similar	to	the	one	above	in	some	ways,	but	we
would	probably	not	think	of	it	as	an	ADT	because	it	has	more	‘behaviour’.	What	we
want	to	do	here	is	to	model	a	ball	and	its	motion	on	something	like	a	billiard	table
without	pockets.

To	begin	with,	we	look	at	what	assumptions	we	will	make.	Firstly,	to	simplify	the
physics,	we	assume	no	friction	and	no	loss	of	energy	when	the	ball	bounces	off	the
table	edge.	Secondly,	we	assume	a	given	radius	of	the	ball	and	table	dimensions.
Lastly,	we	assume	a	given	positive	time	step	and	that	the	time	step	is	small	enough	to
reasonably	approximate	the	ball	movement.	For	a	first	pass	at	this	problem,	we	will
also	use	the	following	global	constants:	TOP,	LEFT,	BOTTOM,	RIGHT	and	TIMESTEP	to
describe	the	edges	of	the	table	and	the	time	step.	These,	to	Python,	are	variables	but
as	we	are	not	changing	them	in	our	code,	they	are	called	constants.	It	is	naming
convention	to	use	all	uppercase	to	indicate	constants.	We	also	assume	all	the	balls
have	the	same	radius.

Next,	we	need	to	determine	what	is	necessary	to	describe	the	state	of	the	ball.	We
need	to	know	its	position,	speed	and	direction.	Finally,	we	need	to	know	what
methods	we	will	need	—	in	other	words,	what	the	ball	interface	will	look	like.	We	will
need	accessors	to	get	the	position,	speed	and	direction	and	a	mutator	that	modifies
the	balls	state	based	on	the	given	time	step.	We	also	add	a	test	to	determine	if	this

ball	is	touching	another	ball.	To	do	this	we	require	some	simple	trigonometry	and
physics	and	so	we	will	import	the	math	module.

We	will	start	with	the	class	constructor	and	accessors	and	repr	along	with	some	of	the
base	code	as	follows.

import	math

TOP	=	0.0
LEFT	=	0.0
BOTTOM	=	2.0
RIGHT	=	4.0
TIMESTEP	=	0.1

class	Ball(object)	:
				"""A	class	for	simulating	the	movement	of	a	ball	on	a	billiard	table.

				Class	Invariant:
								0	<=	_direction	<=	2*pi
								and
								LEFT	+	radius	<=	_x	<=	RIGHT	-	radius
								and
								TOP	+	radius	<=	_y	<=	BOTTOM	-	radius
								and
								0	<=	_speed
				"""

				radius	=	0.1

				def	__init__(self,	x,	y,	speed,	direction)	:
								"""Initialise	a	ball	object	with	position,	speed	and	direction.

								Parameters:
												x	(float):	x	coordinate	starting	position	of	Ball.
												y	(float):	y	coordinate	starting	position	of	Ball.
												speed	(float):	Speed	at	which	Ball	is	moving.
												direction	(float):	Direction	in	which	Ball	is	moving.

								Preconditions:
												The	supplied	values	satisfy	the	class	invariant.
								"""
								self._x	=	x
								self._y	=	y
								self._speed	=	speed
								self._direction	=	direction

				def	get_centre_x(self)	:
								"""(float)	Return	the	x	coordinate	of	the	Ball's	centre."""
								return	self._x

				def	get_centre_y(self)	:
								"""(float)	Return	the	y	coordinate	of	the	Ball's	centre."""
								return	self._y

				def	get_speed(self)	:
								"""(float)	Return	the	speed	of	the	Ball."""
								return	self._speed

				def	get_dir(self)	:
								"""(float)	Return	the	direction	in	which	the	ball	is	travelling."""
								return	self._direction

				def	__repr__(self)	:
								"""Ball's	string	representation."""
								return	'Ball({0:.2f},	{1:.2f},	{2:.2f},	{3:.2f})'.format(

																self._x,	self._y,	self._speed,	self._direction)

Firstly,	in	the	comments	for	the	class	itself	we	have	included	a	class	invariant.	This
is	similar	to	the	loop	invariant	we	briefly	discussed	in	week	5.	The	idea	is	that	the
class	invariant	is	a	property	that	should	be	true	over	the	lifetime	of	each	object	of	the
class.	In	other	words,	it	should	be	true	when	the	object	is	first	created	and	after	each
method	is	called.	This	is	typically	a	formula	that	interrelates	the	instance	variables.
(To	shorten	the	formula	we	have	omitted	the	self.	from	the	instance	variables.)	Even
in	a	simple	class	like	this,	the	class	invariant	can	be	a	big	help	when	it	comes	to
writing	methods.	In	particular,	for	the	step	method	we	can	assume	the	class	invariant
is	true	when	the	method	is	called,	and	given	that,	we	need	to	guarantee	the	class
invariant	is	true	at	the	end	of	the	method.

The	next	part	of	the	class	is	the	assignment	to	the	radius.	This	is	a	class	variable.
Class	variables	are	variables	that	are	common	to	all	instances	of	the	class	—	all
instances	of	the	class	share	this	variable	and	if	any	instance	changes	this	variable	all
instances	‘will	see	the	change’.	As	an	example	if	we	execute	self.radius	=	0.2	than	all
ball	instances	will	now	have	that	radius.	Since	all	the	balls	have	the	same	radius,	we
make	it	a	class	variable.

The	constructor	(the	__init__	method)	initialises	the	instance	variables.	There	are
then	the	four	accessor	methods	which	return	the	values	of	the	instance	variables.	This
is	followed	by	the	__rer__	method	so	that	we	can	print	our	Ball	instances	out	nicely.

After	we	save	the	code	in	ball1.py	we	can	test	with	a	few	examples.

>>>	b	=	Ball(0,	2,	3,	1)
>>>	b
Ball(0.00,	2.00,	3.00,	1.00)
>>>	b.get_centre_x()
0
>>>	b.get_centre_y()
2
>>>	b.get_dir()
1
>>>	b.get_speed()
3
>>>	b.radius
0.1

This	is	not	particularly	useful	so	let’s	look	at	writing	the	step	method	that	calculates
position	of	the	ball	in	the	next	TIMESTEP	and	moves	the	ball	to	that	location.	This
method	is	going	to	require	two	other	methods	to	enable	the	ball	to	bounce	off	the
walls	if	it	reaches	one.	The	following	is	the	code	of	the	methods.

				def	_reflect_vertically(self)	:
								"""Change	the	direction	as	the	ball	bounces	off	a	vertical	edge."""
								self._direction	=	math.pi	-	self._direction
								if	self._direction	<	0	:
												self._direction	+=	2	*	math.pi

				def	_reflect_horizontally(self)	:
								"""Change	the	direction	as	the	ball	bounces	off	a	horizontal	edge."""
								self._direction	=	2	*	math.pi	-	self._direction

				def	step(self)	:

								"""Advance	time	by	TIMESTEP	-	moving	the	ball."""

								self._x	+=	TIMESTEP	*	self._speed	*	math.cos(self._direction)
								self._y	+=	TIMESTEP	*	self._speed	*	math.sin(self._direction)
								if	self._x	<	LEFT	+	self.radius	:
												self._x	=	2	*	(LEFT	+	self.radius)	-	self._x
												self._reflectVertically()
								elif	self._x	>	RIGHT	-	self.radius	:
												self._x	=	2	*	(RIGHT	-	self.radius)	-	self._x
												self._reflectVertically()

								if	self._y		<	TOP	+	self.radius	:
												self._y	=	2	*	(TOP	+	self.radius)	-	self._y
												self._reflectHorizontally()
								elif	self._y	>	BOTTOM	-	self.radius	:
												self._y	=	2	*	(BOTTOM	-	self.radius)	-	self._y
												self._reflectHorizontally()

Notice	the	methods	_reflect_vertically	and	_reflect_horizontally	begin	with
underscores.	As	we	do	not	want	these	two	functions	to	be	accessed	outside	the	class,
we	flag	them	as	private.

These	two	methods	do	exactly	what	they	are	named.	_reflect_horizontally	reflects	the
ball	off	any	horizontal	edge.	This	method	simply	takes	the	direction	of	the	ball	away
from	2	pi,	perfectly	bouncing	the	ball	off	the	wall	at	the	same	angle	it	hit	the	wall.	
_reflect_vertically	is	a	little	trickier	as	we	need	to	make	sure	our	class	invariant	is	not
false.	To	bounce	off	a	vertical	wall	we	simply	take	our	direction	away	from	pi.	This	is
mathematically	correct	but	it	could	make	our	class	invariant	false.	For	example,	if	the
ball	is	travelling	at	pi	+	0.1	radians	and	we	do	this	bounce	then	our	direction	is	now
-0.1	radians.	As	this	is	a	negative	number	we	add	2	pi	to	it	so	that	we	get	the	positive
angle	(2	pi	-	0.1	radians).	This	is	the	same	angle	as	-0.1	radians	and	makes	our	class
invariant	true	again.

The	step	method	starts	off	updating	the	x,	y	coordinates	of	the	ball	by	increasing	the
relevant	coordinate	by	the	TIMESTEP	times	the	speed	times	the	relevant	component	of
the	direction.	Next,	it	needs	to	check	if	the	ball	has	met	a	boundary	of	the	table	so
that	the	ball	does	not	break	the	class	invariant	by	leaving	the	table.	This	is	done,	first
by	checking	if	it	has	left	a	vertical	edge	by	seeing	if	the	ball’s	x	position	is	within
radius	distance	of	a	vertical	wall.	If	it	is	then	the	x	position	is	shifted	so	that	it	is
outside	a	radius	distance	of	the	wall	and	reflected	using	the	_reflect_vertically
method.	A	similar	method	is	used	for	if	the	ball	is	on	a	horizontal	edge.

Aside:	Proving	the	Class	Invariant

Warning:	This	is	not	an	easy	proof!	We	need	to	show	that	each	method
preserves	the	class	invariant.	The	following	is	a	proof	of	each	method	and	how
they	preserve	the	class	invariant.	We	start	with	the	easier	one	—	
_reflect_horizontally.	Let	d0	and	d1	be	the	initial	and	final	values	of	
self._direction.

We	want	to	show	that	if
0	<=	d0	<=	2*pi
then
0	<=	d1	<=	2*pi
where
d1	==	2*pi	-	d0
(We	use	==>	for	'implies'	below)

0	<=	d0	<=	2*pi
==>

0	>=	-d0	>=	-2*pi											(multiplying	by	-1)
==>
2*pi	>=	2*pi	-	d0	>=	0						(adding	2*pi)

QED

We	now	prove	the	property	is	true	for	_reflect_vertically.	Here	we	let	d0	be	the
initial	value	of	self._direction,	d1	be	the	value	after	the	first	assignment	and	d2
be	the	final	value.	In	this	case	there	is	an	if	statement	involved	and	so	we	have
to	consider	two	cases:	d1	>=	0	and	d1	<	0.	The	first	case.

We	want	to	show	that	if
0	<=	d0	<=	2*pi	and	d1	>=	0
then
0	<=	d2	<=	2*pi
In	this	case	the	body	of	the	if	statement	is	not	executed	and	so
d2	==	d1	==	pi	-	d0

0	<=	d0	<=	2*pi
==>
0	>=	-d0	>=	-2*pi									(multiplying	by	-1)
==>
pi	>=	pi	-	d0	>=	-pi						(adding	pi)
==>
pi	>=	pi	-	d0	>=	0								(d1	>=	0	i.e.	pi	-	d0	>=	0)

QED

The	second	case.

We	want	to	show	that	if
0	<=	d0	<=	2*pi	and	d1	<	0
then
0	<=	d2	<=	2*pi
In	this	case	the	body	of	the	if	statement	is	executed	and	so
d2	==	2*pi	+	d1		and	d1	==	pi	-	d0	and	so	d2	==	3*pi	-	d0

d1	<	0
==>
pi	-	d0	<	0
==>
3*pi	-d0	<	2*pi												(adding	2*pi)
and
d0	<=	2*pi
==>
-d0	>=	-2*pi															(multiplying	by	-1)
==>
3*pi	-	d0	>=	pi												(adding	3*pi)
and	so
pi	<=	3*pi	-	d0	<=	2*pi

QED

Now	we	look	at	the	hardest	part	of	the	proof	—	that	the	ball	stays	on	the	table.
The	method	has	four	if	statements	and	below	we	will	only	consider	the	case
when	the	first	test	is	satisfied	—	the	other	cases	follow	in	a	similar	manner.	We
let	x0	be	the	initial	value	of	self._x,	x1	be	the	value	after	the	first	assignment	and
x2	be	the	final	value.	We	also	let	s	be	self._speed,	d	be	self._direction	and	r	be	
Ball.r.

So	we	can	assume
left+r	<=	x0	<=	right-r
and
0	<=	s*timestep	<	r
and
x1	<	left	+	r				(the	test	in	the	first	if	statement	is	true)

and	we	want	to	show
left+r	<=	x2	<=	right-r

We	have
x1	==	x0	+	s*timestep*cos(d)	and	x2	==	2*(left+r)	-	x1

Now
x1	<	left	+	r
==>
-x1	>=	-left	-	r																					(multiplying	by	-1)
==>
2*(left+r)	-	x1	>=	left+r												(adding	2*(left+r))
==>
x2	>=	left+r
(one	half	of	the	required	inequality)

We	now	need	to	show
2*(left+r)	-	x0	-	s*timestep*cos(d)	<=	right-r

left+r	<=	x0
==>
left+r	-	x0	<=	0
==>
2*(left+r)	-	x0	+	r	<=	left	+	2*r																					(adding	left	+	2*r)
==>
2*(left+r)	-	x0	+	s*timestamp	<=	left	+	2*r											(r	>=	s*timestamp)
==>
2*(left+r)	-	x0	-	s*timestamp*cos(d)	<=	left	+	2*r				(1	>=	-cos(d)	and	s*timestamp	
>=	0)
==>
x2	<=	left	+	2*r

So	provided	left+2*r	<=	right	-	r		(i.e.	right	-	left	>=	3*r)
then	the	required	property	is	true.

This	means	that,	if	we	insist	that	the	table	is	at	least	one	and	a	half	balls	long
and	wide	then	the	step	method	will	maintain	the	class	invariant.

The	point	of	this	exercise	is	to	show	that	it	is	possible	to	prove	useful	properties
about	the	class	and	therefore	of	any	object	of	the	class.	Here	we	showed	that,
provided	the	global	variables	satisfy	some	reasonable	constraints,	any	ball	from
the	Ball	class	(that	initially	satisfies	the	class	invariant)	will	stay	on	the	table.

After	adding	the	methods	and	saving	the	code	ball2.py	we	can	run	a	simple	test.

>>>	b	=	Ball(0.51,	0.51,	1.0,	math.pi/4)
>>>	for	i	in	range(25)	:
								b.step()
								print(b)

Ball(0.58,	0.58,	1.00,	0.79)
Ball(0.65,	0.65,	1.00,	0.79)
Ball(0.72,	0.72,	1.00,	0.79)
Ball(0.79,	0.79,	1.00,	0.79)
Ball(0.86,	0.86,	1.00,	0.79)
Ball(0.93,	0.93,	1.00,	0.79)
Ball(1.00,	1.00,	1.00,	0.79)
Ball(1.08,	1.08,	1.00,	0.79)
Ball(1.15,	1.15,	1.00,	0.79)
Ball(1.22,	1.22,	1.00,	0.79)
Ball(1.29,	1.29,	1.00,	0.79)
Ball(1.36,	1.36,	1.00,	0.79)
Ball(1.43,	1.43,	1.00,	0.79)

Ball(1.50,	1.50,	1.00,	0.79)
Ball(1.57,	1.57,	1.00,	0.79)
Ball(1.64,	1.64,	1.00,	0.79)
Ball(1.71,	1.71,	1.00,	0.79)
Ball(1.78,	1.78,	1.00,	0.79)
Ball(1.85,	1.85,	1.00,	0.79)
Ball(1.92,	1.88,	1.00,	5.50)
Ball(1.99,	1.81,	1.00,	5.50)
Ball(2.07,	1.73,	1.00,	5.50)
Ball(2.14,	1.66,	1.00,	5.50)
Ball(2.21,	1.59,	1.00,	5.50)
Ball(2.28,	1.52,	1.00,	5.50)

The	last	method	we	will	define	is	a	method	to	see	if	2	balls	are	touching.	This	method
will	be	useful	when	we	have	multiple	Balls.	Here	is	the	method	definition.

				def	touching(self,	other)	:
								"""(bool)	Return	True	iff	this	Ball	is	touching	other."""
								return	(((self._x	-	other.get_centre_())	**	2
																	+	(self._y	-	other.get_centre_y())	**	2)
															<=	(2	*	self.radius)	**	2)

This	method	gets	the	straight-line	distance	between	the	two	balls	and	returns	true	if
and	only	if	(iff)	the	distance	is	less	than	or	equal	to	the	distance	of	two	ball	radii.

After	adding	this	method	to	our	class	we	can	save	our	ball.py	code.

Using	the	Ball	Class

Where	things	get	really	interesting	is	when	we	create	several	instances	of	the	class.
Below	is	an	example	to	show	the	power	of	object-oriented	programming	—	once	we
have	defined	the	class	we	can	create	as	many	instances	as	we	want!

>>>	balls	=	[Ball(1.0,	1.0,	1.0,	0),
													Ball(1.2,	1.2,	1.0,	1.0),
													Ball(1.4,	1.4,	1.0,	2.0)]
>>>	balls
[Ball(1.00,	1.00,	1.00,	0.00),	Ball(1.20,	1.20,	1.00,	1.00),	Ball(1.40,	1.40,	1.00,	
2.00)]
>>>	for	b	in	balls	:	
								b.step()

>>>	balls
[Ball(1.10,	1.00,	1.00,	0.00),	Ball(1.25,	1.28,	1.00,	1.00),	Ball(1.36,	1.49,	1.00,	
2.00)]

>>>	def	some_touch(balls)	:
								for	b1	in	balls	:
																for	b2	in	balls	:
																								if	b1	!=	b2	and	b1.touching(b2)	:
																																return	True
								return	False

>>>	while	not	some_touch(balls)	:
								for	b	in	balls	:	
																b.step()

>>>	balls
[Ball(1.20,	1.00,	1.00,	3.14),	Ball(3.57,	1.49,	1.00,	4.14),	Ball(1.13,	0.91,	1.00,	

5.14)]

The	next	step	would,	of	course,	be	to	program	the	interaction	between	the	balls.	We
could	do	this	either	by	writing	a	collection	of	functions	to	manage	the	interaction	of
the	balls	and	the	motion	or	we	could	define	a	Table	class	(for	example)	which	would
contain	a	collection	of	balls	and	a	step	method	for	the	table	which	would	involve
stepping	each	ball	and	defining	how	the	balls	bounce	off	each	other.

Is	defining	a	Table	class	worthwhile?	It	could	be	argued	either	way.	If	there	was	only
ever	going	to	be	one	table	then	it	could	be	argued	that	creating	a	class	would	be
overkill.	On	the	other	hand,	collecting	all	the	information	and	behaviour	of	the	table
into	one	place	(a	class)	could	be	a	good	idea.

Summary
In	this	section	we	have	introduced	the	idea	of	class	design.	Once	we	have	defined	a
class	we	can	take	any	number	of	instances	of	the	class.	This	is	a	simple,	but	powerful
form	of	reuse.	Things	to	consider	when	designing	classes:

What	assumptions	am	I	making?
What	data	do	I	need	to	store?

Create	instance	variables	to	capture	properties	associated	with	individual
objects.
Create	class	variables	to	capture	shared	properties

Are	the	values	of	variables	interrelated	or	constrained?	—	Add	a	class	invariant
to	the	class	comments.
What	should	the	interface	look	like?	—	What	are	the	‘public’	methods?
Name	the	class	after	the	type	of	objects	it	produces.
Name	variables	after	their	roles	and	make	instance	variables	private.
What	information	does	the	constructor	need	to	create	an	object?	Add	parameters
to	the	__init__	method	and	give	them	meaningful	names.
Name	each	method	to	suggest	its	role.
Comment	each	method	before	writing	any	code!
Don’t	‘over	complicate’	methods	—	methods	should,	where	possible,	perform	just
one	task.
What	helper	methods	do	I	need?	—	make	them	private.
For	testing	purposes	write	the	__repr__	method.

The	Greek	shall	inherit	the	Earth

Inheritance
Introduction
We	are	going	to	look	at	a	class	that	represents	a	simple	television.	This	class	will	have
a	channel	and	a	power	state.	We	will	have	methods	to	turn	the	TV	on	and	off	and
change	the	channel	up	and	down.	The	following	is	the	class	definition.

class	TV(object)	:
				"""Representation	of	a	simple	television."""

				def	__init__(self)	:
								self._channel	=	1
								self._power	=	False

				def	turn_on(self)	:

								"""Turns	the	TV	on."""
								self._power	=	True

				def	turn_off(self)	:
								"""Turns	the	TV	off."""
								self._power	=	False

				def	channel_up(self)	:
								"""Changes	the	channel	up	by	1.
											If	the	channel	goes	above	100	then	loops	back	to	1.
								"""
								if	self._power	:
												self._channel	+=	1
												if	self._channel	>	100	:
																self._channel	=	1

				def	channel_down(self)	:
								"""Changes	the	channel	down	by	1.
											If	the	channel	goes	below	1	then	loops	back	to	100.
								"""
								if	self._power	:
												self._channel	-=	1
												if	self._channel	<	1	:
																self._channel	=	100

				def	__str__(self)	:
								if	self._power	:
												return	"I'm	a	TV	on	channel	{0}".format(self._channel)
								else	:
												return	"I'm	a	TV	that	is	turned	off"

Now	if	we	save	our	file	as	tv.py	we	can	have	a	look	at	the	functionality	of	an	object	of
this	class.

>>>	tv	=	TV()
>>>	str(tv)
"I'm	a	TV	that	is	turned	off"
>>>	tv.turn_on()
>>>	str(tv)
"I'm	a	TV	on	channel	1"
>>>	tv.channel_down()
>>>	str(tv)
"I'm	a	TV	on	channel	100"
>>>	for	i	in	range(20)	:
				tv.channel_up()

>>>	str(tv)
"I'm	a	TV	on	channel	20"

It	is	clear	that	this	TV	does	not	have	much	functionality.	As	a	TV	it	is	also	a	little
annoying	to	have	to	keep	hitting	the	change	channel	to	get	to	the	channel	of	interest.
What	if	we	wanted	another	“Deluxe	TV”	class	that	could	‘jump’	straight	to	a	channel?
One	way	to	do	this	is	to	copy	and	modify	our	code.	A	better	way	to	do	this	is	to	write	a
class	that	includes	the	same	functionality	as	our	existing	TV	class	but	with	a	little
extra.	Object-oriented	programming	does	this	easily	through	the	use	of	inheritance.
Inheritance	is	the	concept	where	one	class,	the	subclass,	‘inherits’	properties	and
methods	of	another	existing	class,	the	superclass.	This	is	another	example	of	where
we	can	reuse	existing	code	without	having	to	duplicate	it.

Let’s	now	write	a	new	class	that	represents	a	simple	Deluxe	TV	where	it	is	possible	to

‘jump’	to	a	selected	channel.	Here	is	the	class	definition.

class	DeluxeTV(TV)	:
				"""Representation	of	a	Deluxe	TV	where	the	channel	can	be	set
							without	using	up	and	down.
				"""

				def	set_channel(self,	channel)	:
								"""Sets	the	TV	channel	to	the	indicated	'channel'	if	the	TV	is	on.
											If	'channel'	is	invalid	an	error	message	is	output.
								"""
								if	self._power	:
												if	1	<	channel	<	100	:
																self._channel	=	channel
												else	:
																print("{0}	is	not	a	valid	channel".format(channel))

First	notice	in	the	line	class	DeluxeTV(TV)	we	have	TV	instead	of	object	in	the	brackets.
This	says	that	DeluxeTV	inherits	from	TV.	In	fact	every	other	class	that	we	have	written
so	far	has	inherited	from	the	object	class.	The	object	class	is	the	type	which	all	other
classes	should	inherit	from,	either	directly	or	indirectly	(as	in	this	case).	The	next
thing	to	notice	is	that	DeluxeTV	does	not	have	an	__init__	method.	As	we	are	not	adding
or	changing	any	data	structures	of	our	TV	class	we	do	not	need	an	__init__	method	as
it	uses	the	inherited	method	from	TV.	Our	new	class	simply	has	the	one	method
definition	that	allows	us	to	set	the	channel.

We	can	now	add	this	class	definition	after	our	TV	class	definition	and	save	a	
deluxe_tv.py	file	and	have	a	look	at	the	functionality	of	our	new	TV.

>>>	tv	=	DeluxeTV()
>>>	str(tv)
"I'm	a	TV	that	is	turned	off"
>>>	tv.turn_on()
>>>	str(tv)
"I'm	a	TV	on	channel	1"
>>>	tv.channel_up()
>>>	str(tv)
"I'm	a	TV	on	channel	2"
>>>	tv.set_channel(42)
>>>	str(tv)
"I'm	a	TV	on	channel	42"
>>>	tv.set_channel(200)
"200	is	not	a	valid	channel"
>>>	str(tv)
"I'm	a	TV	on	channel	42"

The	first	few	examples	show	that	we	have	not	changed	the	other	functionality	of	the
TV.	This	is	because	our	DeluxeTV	has	all	the	methods	of	our	TV.	The	last	two	examples
shows	our	new	functionality	and	that	we	can	now	‘jump’	to	any	valid	channel.

Overriding	Methods
Let’s	continue	with	our	TV	classes	and	write	a	new,	Super	Deluxe	TV	that	extends	the
functionality	of	a	DeluxeTV,	and	can	store	favourite	channels.	We	will	also	make	the
channel	up	and	down	methods	move	through	the	favourite	channels	only.	In	this	case,
not	only	will	we	need	to	add	new	methods	to	store	and	remove	favourite	channels,	but
we	will	need	to	make	different	channel_up	and	channel_down	methods.

We	can	do	this	by	redefining	channel_up	and	channel_down.	Redefining	an	existing
method	of	a	superclass	is	known	as	overriding	the	method.	This	is	useful	as	not	all
classes	want	to	have	the	same	functionality	for	each	method	of	its	superclass.	When
we	call	tv.channel_up()	and	tv.channel_down()	on	a	SuperDeluxeTV,	the	new	definitions	will
be	executed,	and	the	old	definitions	will	be	ignored.

class	SuperDeluxeTV(DeluxeTV)	:
				"""Representation	of	a	Super	Delux	TV	where	channels	can	be	saved
							to	favourites.	Channel	up	and	down	goes	through	the	favourites.
				"""

				def	__init__(self)	:
								super().__init__()
								self._favourites	=	[]										#	All	favourite	TV	channels.

				def	store(self)	:
								"""Stores	the	current	channel	as	one	of	the	favourites."""
								if	self._channel	not	in	self._favourites	and	self._power	:
												self._favourites.append(self._channel)
												self._favourites.sort()

				def	remove(self)	:
								"""Removes	the	current	channel	so	that	it	is	no	longer	a	favourite."""
								if	self._power	:
												if	self._channel	in	self._favourites	:
																self._favourites.remove(self._channel)
												else	:
																print("{0}	is	not	in	favourites".format(self._channel))

				def	channel_up(self):
								"""Moves	to	the	next	higher	favourite	channel.

											It	does	not	matter	if	the	current	channel	is	a	favourite	or	not.
											Channel	will	wrap	around	to	1	if	it	passes	MAX_CHANNEL	while	
											searching	for	the	next	higher	favourite	channel.
								"""
								if	self._power	:
												if	not	self._favourites	:
																print("No	favourites	stored")
												else	:
																while	True	:
																				self._channel	+=	1
																				if	self._channel	>	100	:
																								self._channel	=	1
																				if	self._channel	in	self._favourites	:
																								break

				def	channel_down(self)	:
								"""Moves	to	the	previous	(lower)	favourite	channel.

											It	does	not	matter	if	the	current	channel	is	a	favourite	or	not.
											Channel	will	wrap	around	to	MAX_CHANNEL	if	it	passes	1	while	
											searching	for	the	previous	favourite	channel.
								"""
								if	self._power	:
												if	not	self._favourites	:
																print("No	favourites	stored")
												else	:
																while	True	:
																				self._channel	-=	1
																				if	self._channel	<	1	:
																								self._channel	=	100
																				if	self._channel	in	self._favourites	:
																								break

				def	__str__(self)	:
								if	self._power	:
												return	"I'm	a	Super	Deluxe	TV	on	channel	{0}".format(self._channel)
								else	:
												return	"I'm	a	Super	Deluxe	TV	that	is	turned	off"

In	the	class	above,	we	also	need	to	override	the	__init__	method	so	that	the	favourites
list	will	be	created.	However,	unlike	the	channel_up	and	channel_down	methods,	we	still
want	to	keep	the	existing	__init__	functionality	from	the	DeluxeTV	and	TV	classes.	To	do
this,	we	need	to	explicitly	call	the	__init__	method	of	the	superclass	(DeluxeTV):	
super().__init__().	The	super	function	works	out	what	superclass	has	the	method
attempting	to	be	called	and	returns	that	class,	allowing	the	method	to	operate	on	the
superclass	type.	It	is	simply	required	from	then	to	input	the	inputs	required	to	create
that	subclass.	Once	that	is	done,	we	can	add	in	the	additional	code	to	create	the
favourites	list.

We	have	also	overridden	the	__str__	method	to	give	a	slightly	different	text
representation.

After	saving	our	code	as	super_deluxe_tv.py	we	can	have	a	look	at	a	few	examples	of
our	new	class.

>>>	tv	=	SuperDeluxeTV()
>>>	tv.turn_on()
>>>	str(tv)
"I'm	a	Super	Deluxe	TV	on	channel	1"
>>>	tv.channel_up()
No	favourites	stored
>>>	tv.set_channel(42)
>>>	str(tv)
"I'm	a	Super	Deluxe	TV	on	channel	42"
>>>	tv.store()
>>>	tv.set_channel(87)
>>>	tv.store()
>>>	tv.channel_up()
>>>	str(tv)
"I'm	a	Super	Deluxe	TV	on	channel	42"
>>>	tv.channel_up()
>>>	str(tv)
"I'm	a	Super	Deluxe	TV	on	channel	87"
>>>	tv.set_channel(50)
>>>	tv.channel_down()
>>>	str(tv)
"I'm	a	Super	Deluxe	TV	on	channel	42"

In	fact	we	have	already	been	overriding	methods	in	the	classes	that	we	have
previously	written.	The	__init__,	__str__,	__eq__,	etc.	methods	that	we	have	written	all
override	the	existing,	corresponding,	method	in	the	object	class.

Inheritance	Syntax

<div	class="language-python	highlighter-rouge"><div	class="highlight"><pre	
class="highlight"><code>class	<span	
class="nc">Class(<span	
class="n">SuperClass)	:
...	</code></pre></div>				</div>

Semantics

A	new	class,	Class,	will	be	created,	inheriting	from	SuperClass.	Instances	will	be
able	to	use	all	the	methods	and	class	variables	defined	in	the	superclass,	as	well
as	any	methods	defined	in	Class.	Instances	will	also	be	able	to	access	methods
and	class	variables	of	the	superclass	of	SuperClass,	and	so	on	through	the
superclasses	(these	are	all	indirect	superclasses	of	Class,	and	SuperClass	is	a
direct	superclass).	The	collection	of	superclass-subclass	relationships	is
known	as	the	inheritance	hierarchy.

If	Class	defines	a	method	with	the	same	name	as	one	in	a	superclass	(direct	or
indirect),	then	that	method	has	been	overridden.	When	the	method	
instance.method(arg1,	...)	is	called,	the	method	defined	in	Class	is	used.
However,	the	overridden	method	can	still	be	accessed	directly	by	calling	
super().method(arg1,	...)	

Method	Resolution	Order
When	we	override	a	method,	we	are	creating	a	new	method	with	the	same	name.	This
raises	an	issue	—	how	does	Python	determine	which	method	to	call?	Python	has	a	set
of	rules	that	determine	which	class	the	method	will	come	from,	known	as	the	Method
Resolution	Order,	or	MRO.	As	an	example,	consider	the	four	classes	below.

class	A(object)	:
				def	__init__(self,	x)	:
								self._x	=	x

				def	f(self)	:
								return	self._x

				def	g(self)	:
								return	2	*	self._x

				def	fg(self)	:
								return	self.f()	-	self.g()

class	B(A)	:
				def	g(self)	:
								return	self._x	**	2

class	C(B)	:
				def	__init__(self,	x,	y)	:
								super().__init__(x)
								self._y	=	y

				def	fg(self)	:
								return	super().fg()	*	self._y

class	D(A)	:
				def	f(self)	:
								return	-2	*	self.g()

After	saving	this	code	as	mro.py,	we	can	look	at	the	functionality	of	our	classes.	To
start	with,	let’s	just	look	at	what	an	object	of	class	A	does.

>>>	a	=	A(3)
>>>	a._x
3
>>>	a.f()
3
>>>	a.g()
6
>>>	a.fg()
-3

This	class	is	straightforward.	The	constructor	A(3)	calls	the	__init__	method,	which
creates	an	attribute	_x	with	the	value	3.	Method	f	returns	the	value	of	_x,	method	g
returns	twice	_x	and	method	fg	returns	the	difference	between	the	results	of	these
two	methods.

Now,	let’s	have	a	look	at	using	an	object	of	the	B	class.

>>>	b	=	B(3)
>>>	b._x
3
>>>	b.f()
3
>>>	b.g()
9
>>>	b.fg()
-6

Let’s	consider	what	happens	when	we	construct	the	object	B(3).	The	Python
interpreter	will	create	a	new	object	and	attempt	to	call	the	__init__	method.	However,
the	B	class	does	not	have	a	definition	of	the	__init__	method.	Python	then	looks	to	the
superclass	for	an	__init__	method.	The	superclass	is	A,	which	has	an	__init__	method.
This	__init__	method	is	called,	which	creates	an	attribute	_x	with	the	value	3.

What	happens	when	we	call	b.f()?	The	B	class	does	not	have	a	definition	of	the	f
method.	Therefore	the	interpreter	looks	in	the	superclass	A	for	an	f	method,	which	it
finds.	This	method	is	used,	which	returns	the	value	of	b.x	(which	is	3).

Next	the	g	method	is	called.	The	B	class	has	a	g	method	so	the	interpreter	uses	that	g
method,	returning	the	square	of	x,	in	this	case	9.

When	the	fg	method	is	called,	B	again	does	not	have	this	method	so	the	interpreter
looks	back	to	the	superclass	and	uses	the	fg	method	from	A,	which	returns	self.f()	-	
self.g().	Because	the	fg	method	was	called	with	a	B	object,	the	interpreter	will	look
for	f	and	g	methods	in	the	B	class.	As	before,	B	does	not	have	a	definition	of	f,	so	the
interpreter	uses	the	definition	from	A,	which	returns	3.	The	process	is	repeated	for	the
g	method	call,	but	as	the	B	class	has	a	definition	of	g,	that	method	is	called,	which
returns	9.	So	the	return	value	of	b.fg()	is	3	-	9,	which	is	-6.

Now,	let’s	look	at	using	an	object	of	the	C	class.

>>>	c	=	C(3,	5)
>>>	c._x
3
>>>	c._y
5
>>>	c.f()
3
>>>	c.g()

9
>>>	c.fg()
-30

The	C	class	inherits	from	the	B	class,	which	in	turn	inherits	from	A.	When	C(3,	5)	is
constructed,	Python	will	look	for	an	__init__	method	in	C,	which	it	finds	and	uses.	This
calls	super().__init__(3)	method.	The	super()	function	will	first	look	in	B	for	an	__init__
method.	As	B	does	not	have	an	__init__	method,	super	will	look	at	B’s	super	class,
which	is	A	for	an	__init__	method.	As	A	does	have	a	__init__	method,	super	evaluates	to
A.	Therefore,	the	super().__init__(3)	line	in	C’s	__init__	method	results	in	calling	
A.__init__(3).	A’s	__init__	will,	therefore,	set	the	value	of	the	attribute	x	to	3.	The	next
line	in	C.__init__	will	now	run,	setting	the	value	of	the	attribute	y	to	5.

When	c.f()	is	called,	C	does	not	have	an	f	method,	so	the	interpreter	looks	in	the
superclass,	B.	B	also	does	not	have	an	f	method	so	the	interpreter	looks	in	B’s
superclass,	which	is	A.	The	f	method	of	A	is	finally	used,	which	returns	the	value	of	the
attribute	_x.

The	process	is	the	same	again	for	the	g	method	call.	As	C	does	not	have	a	g	method,
the	interpreter	looks	in	the	B	class.	B	does	have	a	g	method,	so	that	is	used,	and
returns	3	**	2.

Next	is	the	fg	method	call	on	C.	This	method	first	calls	super().fg()	which	will	look	for
an	fg	method	first	in	the	B	class.	As	B	doesn’t	have	an	fg	method,	the	super	function
will	look	in	B’s	superclass,	which	is	A,	and,	therefore,	A.fg()	is	called.	This	method
follows	the	process	just	described	to	call	both	the	f	method	from	A	and	the	g	method
from	B	and	subtract	the	results	together,	performing	the	operation	3	-	9.	The	result	of
the	super().fg()	call	is	-6,	which	is	multiplied	by	the	attribute	y	(5)	to	give	-30	as	the
final	result.

Finally,	let’s	have	a	look	at	using	an	object	of	the	D	class.

>>>	d	=	D(3)
>>>	d._x
3
>>>	d.f()
-12
>>>	d.g()
6
>>>	d.fg()
-18

The	D	class	is	similar	to	the	B	class.	The	f	method	call	on	D	uses	the	f	method	defined
in	D.	This	method	calls	self.g().	D	does	not	have	a	g	method,	so	the	interpreter	calls
the	g	method	from	the	superclass	(A)	class	performing	the	operation	-2	*	2	*	3.	The	g
method	call	on	D	works	exactly	the	same	way.

When	the	fg	method	of	D	is	called	the	interpreter	uses	the	fg	method	of	A,	as	D	does
not	have	an	fg	method	defined.	This	calls	the	f	method	using	the	f	method	of	D,	which
in	turn	uses	the	g	method	of	A,	and	then	calls	the	g	method	of	A	again.	The	results	are
then	subtracted	performing	the	operation	-12	-	6.

In	summary,	the	MRO	can	be	easily	determined	by	simply	following	the	chain	of
inheritance	of	the	classes	involved,	remembering	to	always	start	at	the	class	the
method	call	is	performed	on.

Aside:	Multiple	Inheritance

Python	supports	the	ability	for	classes	to	inherit	from	more	than	one	superclass,
known	as	multiple	inheritance.	As	an	example,	consider	these	four	classes:

<div	class="language-python	highlighter-rouge"><div	class="highlight"><pre	
class="highlight"><code>class	<span	
class="nc">A(object
)	:
def	__init__
(self,	<span	
class="n">x)	:
				self.<span	
class="n">_x	=	x

def	f(
self)	:
				return	self<span	
class="o">._x

class	B(A)	:	def	f(self)	:	return	self._x	**	2

class	C(A)	:	def	init(self,	x,	y)	:	super().init(x)	self._y	=	y

def	g(
self)	:
				return	self<span	
class="o">.f()	<span	
class="o">*	self.<span	
class="n">_y

class	D(B,	C)	:	def	info(self)	:	print(“x	=	{0},	y	=	{1}”.format(self_.x,
self._y))	print(“f()	->	{0}”.format(self.f()))	print(“g()	->
{0}”.format(self.g()))	</code></pre></div>	</div>

The	class	D	inherits	from	both	B	and	C,	which	each	inherit	from	A.	Here	is	an
interaction	with	the	D	class:

<div	class="language-python	highlighter-rouge"><div	class="highlight"><pre	
class="highlight"><code>>>>	<span	
class="n">d	=	D<span	
class="p">(3,	<span	
class="mi">5)	>>>
	d.<span	
class="n">info()	x	<span	
class="o">=	3,	<span	
class="n">y	=	5	<span	
class="n">f()	->	
9	g()	
->	45	</code></pre></div>				
</div>

When	the	f	method	is	called,	Python	will	use	the	f	method	defined	in	B.	When
the	g	method	is	called,	Python	uses	the	g	method	defined	in	C.	This	method	calls	
self.f(),	which	will	again	be	the	method	defined	in	B.	We	see	that	without
needing	to	modify	anything	in	the	D	class,	we	have	manipulated	the	g	method

defined	in	the	C	class	to	use	the	f	method	of	B	instead	of	A.	This	technique	can
be	useful	in	certain	situations.

However,	we	must	be	very	careful	when	using	multiple	inheritance,	as	it	makes
the	MRO	much	harder	to	interpret.	If	B	and	C	were	to	both	define	the	same
method,	which	one	is	used?	If	D	overrides	this	method	and	needs	to	access	the
superclass	method,	should	super	evaluate	to	B	or	C?	Is	it	possible	for	unwanted
side-effects	to	occur?	Does	the	order	of	inheritance	matter	(class	D(B,	C):	or	
class	D(C,	B):)?

Using	multiple	inheritance	is	often	inadvisable	where	other	techniques	can	be
used	to	achieve	the	same	desired	outcome.	Some	programming	languages,	such
as	Java	and	Ruby,	do	not	support	multiple	inheritance,	as	it	can	be
unnecessarily	complex.

Writing	Exceptions
We	previously	discussed	various	types	of	exceptions,	and	how	to	use	them.	Python	has
a	range	of	built-in	exceptions	for	various	generic	purposes.	For	example,	NameError	is
raised	when	a	variable	name	is	not	found,	and	ValueError	when	an	input	is	of	an
inappropriate	value.

Often	it	is	useful	to	create	different	types	of	exception	for	specific	purposes.	In	the
following	example,	we	will	write	a	class	to	represent	a	savings	bank	account,	which
will	have	methods	for	withdrawing	and	depositing	funds,	and	accumulating	interest.
When	the	user	tries	to	withdraw	or	deposit	a	negative	amount,	we	will	raise	a	
ValueError.	When	the	user	tries	to	withdraw	too	much	money,	then	we	would	like	to
raise	a	different	type	of	error	that	represents	a	failed	withdrawal.

Python	comes	with	a	class	to	represent	exceptions,	called	Exception.	By	creating	a
class	which	inherits	from	Exception,	we	can	create	our	own	custom	exceptions.	Here	is
an	exception	for	a	failed	withdrawal:

class	WithdrawalError(Exception)	:
				"""An	exception	to	be	raised	when	a	withdrawal	fails."""
				def	__init__(self,	message,	balance):
								"""
								Parameters
												message	(str):	The	reason	for	the	error
												balance	(float):	The	balance	of	the	account	
								"""
								super().__init__(message)
								self._balance	=	balance

				def	get_balance(self)	:
								return	self._balance

The	exception	stores	a	message	detailing	why	the	transaction	failed,	and	the	balance
of	the	savings	account.	Using	this,	we	can	write	a	class	to	represent	the	savings
account:

class	SavingsAccount(object)	:
				"""A	simple	savings	account."""
				def	__init__(self,	owner,	initial_deposit,	monthly_interest)	:
								self._owner	=	owner
								self._balance	=	initial_deposit

								self._interest	=	monthly_interest

				def	get_owner(self)	:
								return	self._owner

				def	get_balance(self)	:
								return	self._balance

				def	add_interest(self)	:
								"""Add	the	monthly	interest	to	the	balance."""
								if	self._balance	>	0	:
												interest	=	self._balance	*	self._interest	/	100.0
												self._balance	+=	interest

				def	deposit(self,	amount)	:
								"""Add	a	positive	amount	to	the	balance."""
								if	amount	<	0	:
												raise	ValueError("Can't	deposit	a	negative	amount")
								self._balance	+=	amount

				def	withdraw(self,	amount)	:
								"""Subtract	a	positive	amount	from	the	balance."""
								if	amount	<	0	:
												raise	ValueError("Can't	withdraw	a	negative	amount")
								new_balance	=	self._balance	-	amount
								if	new_balance	<	0	:
												raise	WithdrawalError("Not	enough	funds	in	account",	self._balance)
								else	:
												self._balance	=	new_balance

				def	__repr__(self)	:
								repr_string	=	"SavingsAccount({0},	{1},	{2})"
								return	repr_string.format(self._owner,	self._balance,	self._interest)

We	can	then	write	functions	withdraw	and	deposit	that	the	user	can	interact	with:

def	withdraw(account,	amount)	:
				try	:
								account.withdraw(amount)
				except	ValueError	as	e	:
								print("Invalid:",	e)
				except	WithdrawalError	as	e	:
								print("Cannot	withdraw:",	e)
								print("Your	account	balance	is	${0}".format(e.get_balance()))
				else	:
								print("Withdrawal	successful.")
								
def	deposit(account,	amount)	:
				try	:
								account.deposit(amount)
				except	ValueError	as	e	:
								print("Invalid:",	e)
				else	:
								print("Deposit	successful.")

These	functions	both	use	a	try-except-else	construct.	In	these	constructs,	the	else	body
is	executed	if	there	were	no	exceptions	raised	in	the	try	body.

The	code	above	is	available	in	the	file	banking.py.	Below	is	an	example	interaction	with
this	savings	account:

>>>	savings	=	SavingsAccount("John	Cleese",	100,	0.3)
>>>	savings
SavingsAccount(John	Cleese,	100,	0.3)
>>>	withdraw(savings,	60)
Withdrawal	successful.
>>>	savings.get_balance()
40
>>>	savings.add_interest()
>>>	savings.get_balance()
40.12
>>>	deposit(savings,	-20)
Invalid:	Can't	deposit	a	negative	amount
>>>	withdraw(savings,	45)
Cannot	withdraw:	Not	enough	funds	in	account
Your	account	balance	is	$40.12

Inheritance	as	Abstraction
Following	from	the	previous	example,	we	write	a	class	that	represents	a	credit
account.

class	CreditAccount(object)	:
				"""A	simple	credit	account."""
				def	__init__(self,	owner,	initial_deposit,	monthly_interest,	limit)	:
								self._owner	=	owner
								self._balance	=	initial_deposit
								self._interest	=	monthly_interest
								self._limit	=	limit

				def	get_owner(self)	:
								return	self._owner

				def	get_balance(self)	:
								return	self._balance

				def	add_interest(self)	:
								"""Subtract	the	monthly	interest	from	the	balance."""
								if	self._balance	<	0	:
												interest	=	self._balance	*	self._interest	/	100.0
												self._balance	+=	interest

				def	deposit(self,	amount)	:
								"""Add	a	positive	amount	to	the	balance."""
								if	amount	<	0	:
												raise	ValueError("Can't	deposit	a	negative	amount")
								self._balance	+=	amount

				def	withdraw(self,	amount)	:
								"""Subtract	a	positive	amount	from	the	balance."""
								if	amount	<	0	:
												raise	ValueError("Can't	withdraw	a	negative	amount")
								new_balance	=	self._balance	-	amount
								if	new_balance	<	-self._limit	:
												raise	WithdrawalError("Credit	limit	reached",	self._balance)
								else	:
												self._balance	=	new_balance

				def	__repr__(self)	:
								repr_string	=	"CreditAccount({0},	{1},	{2},	{3})"
								return	repr_string.format(self._owner,
																																		self._balance,
																																		self._interest,

																																		self._limit)

Notice	that	the	class	definitions	of	SavingsAccount	and	CreditAccount	are	very	similar;	in
fact,	some	of	the	methods	are	identical.	This	is	to	be	expected	as	the	credit	and
savings	accounts	are	both	types	of	bank	account.	We	would	like	to	abstract	out	the
duplicated	methods,	and	create	an	“account”	class	which	represents	the	common
functionality	of	the	two	types	of	account.	Once	this	is	done,	the	SavingsAccount	and	
CreditAccount	classes	can	inherit	from	Account.

Between	the	two	classes,	we	see	that	the	get_owner,	get_balance	and	deposit	methods
are	identical,	so	these	methods	can	be	moved	to	the	Account	class.	The	__init__
method	also	contains	similar	behaviour,	so	it	can	easily	be	moved	to	Account.	The
other	three	methods	(add_interest,	withdraw	and	__repr__)	look	similar,	but	not	in	a	way
that	can	be	easily	abstracted,	so	we	will	leave	them	as	they	are.	The	file	banking2.py
contains	the	code	below.

class	Account(object)	:
				"""An	abstraction	of	different	bank	accounts."""
				def	__init__(self,	owner,	initial_deposit,	monthly_interest)	:
								self._owner	=	owner
								self._balance	=	initial_deposit
								self._interest	=	monthly_interest

				def	get_owner(self)	:
								return	self._owner

				def	get_balance(self)	:
								return	self._balance

				def	deposit(self,	amount)	:
								"""Add	a	positive	amount	to	the	balance."""
								if	amount	<	0	:
												raise	ValueError("Can't	deposit	a	negative	amount")
								self._balance	+=	amount

								
class	SavingsAccount(Account)	:
				"""A	simple	savings	account."""
				def	add_interest(self)	:
								"""Add	the	monthly	interest	to	the	balance."""
								if	self._balance	>	0	:
												interest	=	self._balance	*	self._interest	/	100.0
												self._balance	+=	interest

				def	withdraw(self,	amount)	:
								"""Subtract	a	positive	amount	from	the	balance."""
								if	amount	<	0	:
												raise	ValueError("Can't	withdraw	a	negative	amount")

								new_balance	=	self._balance	-	amount
								if	new_balance	<	0	:
												raise	WithdrawalError("Not	enough	funds	in	account",	self._balance)
								else	:
												self._balance	=	new_balance

				def	__repr__(self)	:
								repr_string	=	"SavingsAccount({0},	{1},	{2})"
								return	repr_string.format(self._owner,	self._balance,	self._interest)

class	CreditAccount(Account)	:
				"""A	simple	credit	account."""
				def	__init__(self,	owner,	initial_deposit,	monthly_interest,	limit)	:

								super().__init__(owner,	initial_deposit,	monthly_interest)
								self._limit	=	limit

				def	add_interest(self)	:
								"""Subtract	the	monthly	interest	from	the	balance."""
								if	self._balance	<	0	:
												interest	=	self._balance	*	self._interest	/	100.0
												self._balance	+=	interest

				def	withdraw(self,	amount)	:
								"""Subtract	a	positive	amount	from	the	balance."""
								if	amount	<	0	:
												raise	ValueError("Can't	withdraw	a	negative	amount")

								new_balance	=	self._balance	-	amount
								if	new_balance	<	-self._limit	:
												raise	WithdrawalError("Credit	limit	reached",	self._balance)
								else	:
												self._balance	=	new_balance

				def	__repr__(self)	:
								repr_string	=	"CreditAccount({0},	{1},	{2},	{3})"
								return	repr_string.format(self._owner,
																																		self._balance,
																																		self._interest,
																																		self._limit)

In	the	television	example	above,	we	used	inheritance	to	add	more	functionality	to	an
existing	type	of	television.	Here,	we	have	used	inheritance	to	abstract	functionality
from	two	similar	classes.	A	result	of	this	is	that	the	Account	class	is	not	a	fully
functional	bank	account;	it	does	not	have	the	ability	to	withdraw	funds	or	accumulate
interest.	Because	of	this,	we	call	the	Account	an	abstract	class.

Abstract	classes	should	not	be	instantiated	directly	(that	is,	we	should	not	create
instances	of	the	abstract	class	itself),	instead	we	create	subclasses	that	fill	in	the
missing	functionality.	We	have	already	seen	an	example	of	an	abstract	class,	Exception.
We	never	raise	an	Exception	itself,	but	we	use	various	subclasses	of	Exception	to
represent	different	things.	An	advantage	of	using	the	concept	of	an	abstract	Account
class	is	that	we	can	write	functions	that	work	with	any	type	of	account.	For	example,
the	withdraw	and	deposit	functions	we	wrote	above	can	also	work	with	CreditAccount
instances:

>>>	credit	=	CreditAccount("Michael	Palin",	0,	1.5,	200)
>>>	credit
CreditAccount(Michael	Palin,	0,	1.5,	200)
>>>	withdraw(credit,	150)
Withdrawal	successful.
>>>	credit.add_interest()
>>>	credit.get_balance()
-152.25
>>>	deposit(credit,	60)
Deposit	successful.
>>>	credit.get_balance()
-92.25
>>>	withdraw(credit,	110)
Cannot	withdraw:	Credit	limit	reached
Your	account	balance	is	$-92.25

Designing	an	Inheritance	Hierarchy

As	another	example	we	now	sketch	out	some	ideas	for	designing	a	simple	inheritance
hierarchy	for	people	at	a	university.

If	we	look	around	campus	we	will	see	lots	of	people	and	we	can	look	at	them	more
closely,	searching	for	similarities.	Some	of	these	people	sit	in	lectures	and	do	exams.
These	people	have	a	lot	in	common	and	so	we	might	define	a	class	to	describe	their
attributes	—	let’s	say	an	UndergraduateStudent	class.	What	do	members	of	this	class
have	in	common?	They	have	names,	addresses,	student	numbers,	student	records,
courses	they	are	enrolled	in.	If	we	look	around	we	will	find	some	other	kinds	of
students	that	have	slightly	different	attributes	—	let’s	put	them	in	a	PostgraduateStudent
class.	These	students	will	share	some	attributes	with	the	other	students	but	have
their	own	attributes	—	for	example,	thesis	topic	and	supervisor.	We	might	then	decide
that	both	kinds	of	students	have	a	lot	of	overlap	and	decide	that	they	both	inherit
from	Student.

There	are	other	people	walking	around	that	get	paid	—	some	of	these	teach	classes
and	do	research	—	let’s	put	them	in	an	Academic	class.	Members	of	this	class	will	have
attributes	like	staff	number,	pay	scale,	roles,	teaching	assignments	and	research
interests.	Others	might	belong	to	a	TechnicalStaff	class	and	others	might	belong	to	an	
Administration	class.	Together	we	might	group	these	together	and	form	the	Staff
superclass	and	then	together	with	students	create	the	Person	superclass.

Now	that	we	have	sketched	out	the	inheritance	hierarchy	we	then	want	to	determine
where	specific	attributes	should	live.	Let’s	start	with	name	and	address.	Everyone	has
these	attributes	and	so	belong	to	the	base	Person	class.	On	the	other	hand,	the
attribute	(method)	for	enrolling	in	a	course	is	specific	to	an	undergraduate	student
and	so	should	go	in	that	class.

What	we	have	done	is	a	bottom-up	design	of	the	class	hierarchy	—	we	started	at	the
bottom	and	worked	our	way	up	moving	from	subclass	to	superclass.	We	could	also	do
top-down	design	—	by	starting	with	the	base	class	(Person)	and	looking	for	differences
—	for	example	staff	get	paid	and	students	do	not.	This	gives	the	subclasses	of	Person.

Three	people	have	just	fallen	past	that	window

Graphical	User	Interfaces	–	Part	1
Introduction
A	graphical	user	interface	(GUI)	allows	users	to	interact	with	a	computer	using,
for	example,	a	mixture	of	icons,	displays	of	text	and	graphics,	and	graphical	elements
called	widgets.	Most	tools	these	days	have	one	or	more	GUIs	and	so	it	is	important
for	software	engineers	to	be	able	to	design	and	implement	GUIs.	In	this	section	we
introduce	some	GUI	basics	via	examples.	We	do	not	go	into	details	of	what	makes
good	GUI	design	–	this	is	left	to	other	courses.

Most	programming	languages	provide	a	mechanism	for	users	to	be	able	to	write
GUIs.	The	Python	community	have	developed	several	GUI	libraries	and	most	of	them
are	portable	across	different	platforms.	The	library	we	will	use	in	this	section	is	
tkInter	which	is	a	Python	library	that	provides	access	to	the	Tk	widget	toolkit.	tkInter
is	part	of	the	default	Python	installation,	and	IDLE’s	GUI	is	written	in	tkInter.

Note:	Running	GUI	Applications

Do	not	run	any	GUI	applications	within	IDLE	—	i.e.	do	not	use	Run	Module.
Instead,	run	the	program	from	outside	IDLE.	In	Windows,	for	example,	simply
double	click	on	the	program	icon	to	run	the	program.	The	problem	is	that	the

main	loop	of	IDLE’s	Python	interpreter	and	our	GUI	application’s	main	loop	do
not	play	well	together.	We	can,	of	course,	still	use	IDLE	to	edit	(and	save)	our
programs.

Running	GUI	applications	in	Windows:

Double-clicking	on	a	file	with	a	.py	extension	will	start	Python.exe	(creating	a
new	console	window).	The	script	will	then	be	loaded	and	this	will	result	in	the
creation	of	the	tkInter	application	window.	For	debugging	purposes,	the
console	window	is	where	error	messages	and	prints	are	written.	To	stop	the
console	from	appearing,	rename	the	file	to	give	it	a	.pyw	extension.	This	will
cause	Pythonw.exe	to	start.	This	version	of	Python	does	not	start	up	a	console
window.

In	Windows	if	an	error	is	raised	while	creating	the	GUI	then	the	program	will
close	and	so	will	the	console	window.	This	means	that	the	error	message	will
not	be	able	to	be	seen.	If	this	happens,	run	the	program	from	inside	IDLE,	this
will	allow	the	message	to	be	seen.	Fix	the	problem,	then	continue	to	run	from
outside	IDLE.

Aside:	Useful	Websites

Online	introductions	to	tkInter	which	may	be	useful	can	be	found	at
http://thinkingtkinter.sourceforge.net

GUI	Structure
We	mentioned	that	a	GUI	is	composed	of	widgets,	it	is	really	made	by	packing
widgets	into	other	containers	and	widgets.	The	tkinter	library	has	many	widgets	that
can	be	used	as	well	as	commands	to	pack	the	widgets	to	make	the	GUI	look	the	way
we	want.

Let’s	first	have	a	look	at	a	very	simple	example	for	our	first	GUI,	we	will	revisit	the
Hello	World	example	we	met	earlier	in	the	course.	This	example	will	consist	simply	of
a	window	with	a	Label	widget	that	has	the	text	"Hello	World!"	in	it.	We	will	also	give
the	window	a	similar	title.	The	following	is	the	code	that	will	create	this	for	us.

import	tkinter	as	tk

root	=	tk.Tk()

root.title('HelloWorld	Example')

hw	=	tk.Label(root,	text='Hello	World!')
hw.pack()

root.mainloop()

The	first	line	of	code	is	an	import	that	imports	the	tkinter	library	and	gives	it	the	alias	
tk.	This	form	of	import	allows	“renaming”	long	named	modules	into	shorter,	easier	to
type	names.	The	second	line	creates	a	variable	root	that	has	the	value	of	an	instance
of	the	Tk	class.	This	Tk	instance	is	the	main	window	that	our	GUI	is	created	in,	it

http://thinkingtkinter.sourceforge.net/

can	be	thought	of	as	our	first	widget	that	all	other	widgets	are	going	to	be	in.	By
convention,	the	variable	name	root	is	used	to	store	the	Tk	instance.	The	next	line	calls
the	title	method	of	the	Tk	class.	This	method	takes	a	string	argument	that	becomes
the	title	of	the	window.	The	next	line	creates	another	variable,	hw,	and	stores	a	Label
class	instance	in	it.	The	Label	constructor	takes	as	a	first	argument	the	parent	widget
that	it	is	to	be	contained	in,	in	this	case	we	want	to	contain	our	label	inside	our	main
window.	The	second	argument	sets	the	text	input	to	the	string	'Hello	World!'.	The
second	last	line	calls	the	pack	method	of	the	Label	class.	All	widgets	have	this	pack
method	and	by	calling	it	we	are	telling	Tk	that	we	want	the	widget	to	be	displayed	in
its	parent	widget.	The	last	line	calls	the	mainloop	method	of	the	Tk	class.	This	method
starts	the	main	loop	of	Tk.	This	is	responsible	for	sizing	and	displaying	widgets	and
handling	events	such	as	mouse	events,	keyboard	events	and	timer	events.	This	loop
will	continue	until	the	window	is	closed.

Aside:	grid

The	other	main	method	that	can	be	used,	other	than	pack,	for	arranging	Tk
widgets	is	grid,	which	involves	structuring	widgets	in	a	grid	layout	with	a	fixed
number	of	rows	and	columns.	We	will	not	be	using	grid	in	this	course.

Let’s	now	save	our	code	as	hello_world_gui.py	and	have	a	look	at	our	first	GUI.
Remember	not	to	run	it	in	IDLE.	Also	remember	that	the	window	will	look	different
depending	on	the	operating	system	it	is	being	used	on.

The	first	thing	we	notice	is	that	the	window	already	has	the	minimize,	maximize	and
close	buttons.	tkInter	creates	these	automatically	for	us.	We	also	notice	that	the
window	can	be	resized	as	normal	so	we	can	make	it	look	as	follows.

Note	that	when	we	resize	the	window	to	make	it	bigger	the	label	will	centre	itself
horizontally	but	stay	at	the	top	of	the	window.	This	is	the	default	positioning	used	by
pack.	Soon	we	will	see	how	to	use	pack	to	get	different	positioning.

Basic	GUI	Code

<div	class="language-python	highlighter-rouge"><div	class="highlight"><pre	
class="highlight"><code>import	<span	
class="nn">tkinter	as	tk

root	=	tk.Tk()

root.title(‘Title	String’)

var_1	=	tk.Widget(parent_widget,	[config_args])	var_1.pack([pack_args])	.
.	.	var_n	=	tk.Widget(parent_widget,	[config_args])
var_n.pack([pack_args])

root.mainloop()	</code></pre></div>	</div>

This	is	the	basic	GUI	code	layout	for	tkInter.	Here	Widget	is	the	type	of	widget
that	is	to	be	created,	parent_widget	is	the	widget	that	the	current	widget	is	to	be
packed	into,	config_args	allow	optional	configuration	of	the	widget	upon
creation,	and	pack_args	are	used	to	arrange	the	widget	inside	its	parent	widget
(we	will	have	a	look	at	these	options	soon).	These	arguments	follow	the	form	
argument_name=argument_value.

Layout
Side

Having	all	the	widgets	of	our	GUI	set	to	the	top-centre	of	the	screen,	as	in	the
previous	example,	is	not	particularly	useful.	This	is	especially	true	when	we	start
getting	many	widgets	and	want	more	complex	layouts.	The	pack	method	we	used	in
the	previous	example	has	many	optional	arguments	that	allow	us	to	place	the	widgets
almost	wherever	we	want	them.

Let’s	have	a	look	at	some	simple	packing	examples	that	will	place	Label	widgets	at
different	edges	of	the	screen.

import	tkinter	as	tk

root	=	tk.Tk()

root.title("Packing")

right	=	tk.Label(root,	text="I	want	to	sit	to	the	right",	bg="light	blue")
right.pack(side=tk.RIGHT)

left	=	tk.Label(root,	text	=	"It's	to	the	left	for	me",	bg="green")
left.pack(side=tk.LEFT)

bottom	=	tk.Label(root,	text="I	want	to	lie	on	the	bottom",	bg="red")
bottom.pack(side=tk.BOTTOM)

bottom2	=	tk.Label(root,	text="I	also	want	to	lie	on	the	bottom",	bg="pink")
bottom2.pack(side=tk.BOTTOM)

root.mainloop()

This	code	is	very	similar	to	our	Hello	World	example	before	but	we	have	three	labels
instead	of	one.	We	have	also	added	an	extra	argument	to	the	Label,	bg,	which	is	short
for	background;	it	sets	the	background	colour	of	the	widget	to	the	colour	specified	in
the	given	string.

This	colour	string	can	be	in	words,	as	long	as	the	colour	is	in	the	list	of	possible
colours.	Alternatively,	we	can	specify	the	RGB	value	of	the	colour,	which	represents
the	amount	of	red,	green	and	blue	in	the	colour.	This	is	done	with	a	hash	(#)	followed
by	six	hexadecimal	digits.	A	hexadecimal	number	is	a	number	in	base	16	rather	than
base	10	(decimal	numbers).	Because	hexadecimal	numbers	are	base	16	we	need
hexadecimal	digits	for	the	numbers	10,11,12,13,14,15.	These	are,	respectively,	
a,b,c,d,e,f.	So,	the	hexadecimal	number	ff	is	the	(decimal)	number	255	–	i.e.	15*16+15.
In	a	hexadecimal	number	representing	a	colour,	the	first	two	digits	represent	the	red
component,	the	next	two	the	green	component,	and	the	last	two	the	blue	component.
So	#ffffff	is	maximum	red,	green	and	blue	–	i.e.	white	and,	conversely,	#000000	is
black.

Also	notice	that	there	is	now	an	optional	argument	inside	the	pack	method	calls.	This
is	the	side	argument,	which	tells	the	widget	to	sit	towards	the	edge	of	the	given
direction	(TOP,	BOTTOM,	LEFT,	RIGHT).	Also	notice	that	the	side	names	are	in	all	caps.	This
is	because	these	are	constants	in	the	tkInter	library.

Aside:	Colour	Options

The	list	of	possible	named	colours	for	Tk	can	be	found	at

After	saving	the	code	to	pack_side.py,	we	can	test	have	a	look	at	the	result.

Notice	how	the	widgets	are	tightly	packed.	Tk	will	keep	the	window	to	a	size	that	just
fits	in	all	the	widgets.	Let’s	experiment	with	expanding	the	window.

Notice	the	positioning	of	the	widgets.	Using	side	places	widgets	into	four	quadrants	of
the	window.	Widgets	are	also	arranged	in	the	order	they	are	packed:	the	red	label
was	packed	before	the	pink	one,	so	the	red	one	was	placed	on	the	bottom	before	the
pink	one.	Also	notice	that	the	background	colour	only	fills	up	the	area	of	the	text	in
the	Label	widget,	and	the	remainder	of	the	window	is	the	unused	grey	background.
When	the	window	expands,	tkInter	allocates	more	space	for	the	widgets	to	sit	in.
Because	the	widgets	don’t	change	size,	they	sit	in	the	centre,	and	the	extra	space	is
filled	in	with	grey	background.	The	image	above	has	been	digitally	altered	and
reproduced	below,	with	black	boxes	indicating	the	space	which	is	allocated	for	that
widget	to	occupy.	Because	the	blue	and	green	labels	were	packed	first,	the	red	and
pink	labels	do	not	get	the	entire	width	of	the	window,	only	what	was	remaining	when
they	were	packed.

Anchor

When	the	window	expands,	each	of	the	widgets	is	left	in	the	centre	of	its	allocated
space.	The	pack	option	anchor	can	be	used	to	specify	the	direction	the	widget	will	sit
when	the	widget	is	given	more	space.	The	anchor	argument	uses	the	compass	system,
valid	arguments	are	N,	E,	S,	W,	NE,	SE,	SW,	NW,	CENTER	(note	the	American	spelling).	Here	is
an	example	of	widgets	arranged	using	anchor:

import	tkinter	as	tk

root	=	tk.Tk()

root.title("Packing")

right	=	tk.Label(root,	text="I	want	to	sit	to	the	right",	bg="light	blue")
right.pack(side=tk.TOP,	anchor=tk.E)

left	=	tk.Label(root,	text	=	"It's	to	the	left	for	me",	bg="green")
left.pack(side=tk.TOP,	anchor=tk.W)

bottom	=	tk.Label(root,	text="I	want	to	lie	on	the	bottom",	bg="red")
bottom.pack(side=tk.TOP,	anchor=tk.S)

root.mainloop()

We	save	our	code	to	pack_anchor.py	and	have	a	look	at	the	result.

We	have	packed	all	the	labels	with	the	argument	side=TOP,	so	they	appear	stacked
from	top	to	bottom	in	the	order	they	were	packed.	If	the	side	argument	is	not	given,	it
defaults	to	TOP,	so	we	could	have	left	it	out	of	the	packing	arguments,	but	we	have
included	it	as	an	explicit	reminder	that	we	want	the	labels	to	be	arranged	top-to-
bottom.	Let’s	expand	the	window	and	see	what	it	looks	like.

Notice	how	the	widgets	have	moved	left	and	right	but	not	changed	the	vertical
position.	anchor	has	“pinned”	the	widgets	in	the	direction	specified.	For	clarity,	we
again	digitally	modify	this	image	to	show	the	space	that	each	widget	has	been	given.
Notice	that	the	red	label	has	been	anchored	to	the	south	side,	but	because	it
consumes	all	its	allocated	space	vertically,	we	cannot	observe	any	difference.

Expand

We	have	already	observed	that	tkInter	allocates	the	minimal	space	needed	to	contain
the	widget,	even	when	the	window	is	resized.	The	expand	packing	option	allows
widgets	to	be	allocated	as	much	space	as	possible	when	the	window	is	resized.	The
following	example	(pack_expand.py)	makes	use	of	this	option.

import	tkinter	as	tk

root	=	tk.Tk()

root.title("Packing")

right	=	tk.Label(root,	text="I	want	to	sit	to	the	right",	bg="light	blue")
right.pack(side=tk.RIGHT)

left	=	tk.Label(root,	text	=	"It's	to	the	left	for	me",	bg="green")
left.pack(side=tk.LEFT,	expand=True)

bottom	=	tk.Label(root,	text="I	want	to	lie	on	the	bottom",	bg="red")
bottom.pack(side=tk.BOTTOM)

bottom2	=	tk.Label(root,	text="I	also	want	to	lie	on	the	bottom",	bg="pink")
bottom2.pack(side=tk.BOTTOM)

root.mainloop()

This	is	equivalent	to	the	first	example,	but	the	left	label	is	packed	with	the	argument	
expand=True.	By	default,	expand	is	False,	so	for	simplicity,	we	leave	it	out	when	it	is	not
required.	When	we	resize	the	window,	we	see	this:

With	digital	modifications	to	the	image	above,	we	show	that	the	space	allocated
around	the	green	label	expands	in	both	directions	when	the	window	is	resized,	while
the	red	and	pink	labels	do	not	gain	any	more	space.	We	can	also	clearly	see	that	the

green	label	has	been	anchored	to	the	centre.

When	multiple	widgets	have	the	expand=True	option,	they	all	expand	equally.	For
example,	if	this	option	were	turned	on	for	the	pink	and	red	labels,	resizing	the
window	vertically	would	give	each	one	the	same	amount	of	extra	space	(equivalent	to
half	the	distance	the	window	is	resized).	This	will	be	demonstrated	in	the	section
below.

Fill

When	we	resize	the	window,	the	widgets	themselves	stay	the	same	size,	but	tkInter
allocates	more	space	to	surround	the	widgets,	based	on	their	anchor	and	expand	values.
The	fill	option	specifies	whether	the	widget	should	grow	to	fill	the	space	allocated
for	it.	Valid	arguments	are	X,	Y,	BOTH,	NONE,	which	represent	filling	in	the	horizontal	(X)
and	vertical	(Y)	dimensions,	both	dimensions,	or	neither	(which	is	the	default	option).
The	following	example	is	similar	to	previous	examples,	and	makes	use	of	the	fill
parameter:

import	tkinter	as	tk

root	=	tk.Tk()

root.title("Packing")

right	=	tk.Label(root,	text="I	want	to	sit	to	the	right",	bg="light	blue")
right.pack(side=tk.RIGHT,	fill=tk.X)

left	=	tk.Label(root,	text	=	"It's	to	the	left	for	me",	bg="green")
left.pack(side=tk.LEFT,	fill=tk.Y)

bottom	=	tk.Label(root,	text="I	want	to	lie	on	the	bottom",	bg="red")
bottom.pack(side=tk.BOTTOM,	expand=True,	fill=tk.BOTH)

bottom2	=	tk.Label(root,	text="I	also	want	to	lie	on	the	bottom",	bg="pink")
bottom2.pack(side=tk.BOTTOM,	expand=True,	fill=tk.Y)

root.mainloop()

This	code	can	be	downloaded	as	pack_fill.py.	When	we	run	this	code	and	resize	the
window,	we	get	this	result:

As	with	the	previous	examples,	we	add	black	borders	to	show	the	space	allocated
around	each	widget:

Note	that	the	pink	and	red	labels	have	been	expanded,	and	together	they	now	occupy
the	full	height	of	the	screen.	The	red	label	has	been	filled	in	both	dimensions,	taking
up	the	entire	space	it	can	use.	The	pink	label	has	been	filled	vertically,	so	it	uses	the
full	height	available	to	it,	but	there	is	still	grey	background	to	the	left	and	right	of	it.
The	green	label	has	also	been	filled	vertically,	but	because	it	does	not	expand
horizontally,	it	appears	to	fill	its	entire	space.	The	blue	label	has	been	filled	in	the	X
dimension,	but	because	the	label	does	not	expand,	this	has	no	effect.

Padding

For	finer	control	of	the	size	and	spacing	of	widgets,	we	can	use	the	padding	options,	
padx,	pady,	ipadx,	ipady,	which	allow	us	to	specify	an	amount	of	space	to	include	around
the	widget,	on	the	inside	and	outside	of	the	widget	(specified	as	a	number	of	pixels).
The	following	example	demonstrates	the	use	of	these	options.

import	tkinter	as	tk

root	=	tk.Tk()

root.title("Packing")

right	=	tk.Label(root,	text="I	want	space	to	the	side",	bg="light	blue")
right.pack(side=tk.TOP,	padx=30)

left	=	tk.Label(root,	text	=	"I	am	very	wide",	bg="green")
left.pack(side=tk.TOP,	ipadx=30)

bottom	=	tk.Label(root,	text="I	want	space	above	and	below",	bg="red")
bottom.pack(side=tk.TOP,	pady=30)

bottom2	=	tk.Label(root,	text="I	am	very	tall",	bg="pink")
bottom2.pack(side=tk.TOP,	ipady=30)

root.mainloop()

This	is	available	to	download	as	pack_pad.py.	When	we	run	this	code,	we	get	the	result
shown	in	the	first	image	below.	The	second	image	has	been	modified	to	include
borders	around	the	labels,	shown	in	purple.

	

The	padx	adds	space	to	the	left	and	right	of	the	label,	shown	by	the	blue	label.	If	any
widgets	were	to	be	added	to	the	sides	of	this	label,	or	if	the	blue	label	were	to	be
resized,	this	space	would	remain	the	same.	Similarly,	the	pady	inserts	padding	above
and	below	the	red	label,	and	the	other	labels	are	moved	to	accommodate	the	extra
space.	The	ipadx	and	ipady	options	insert	padding	around	the	widget,	but	on	the	inside
of	the	widget,	which	makes	the	labels	appear	larger,	as	shown	with	the	green	and
pink	labels.

Packing	Options

The	pack	method	of	tkInter	widgets	supports	the	following	optional	arguments,
which	affect	how	the	widgets	are	arranged	and	displayed	on	the	screen:

Option Description

side
Specify	which	edge	to	pack	this	widget	against.	Can	be	TOP,	BOTTOM,	LEFT
or	RIGHT	(if	not	specified,	defaults	to	TOP).	Multiple	widgets	can	be
packed	on	the	same	side	to	appear	next	to	each	other.

anchor
Specify	where	to	position	this	widget,	inside	the	space	which	is
allocated	for	it.	Can	be	N,	NE,	E,	SE,	S,	SW,	W,	NW	or	CENTER	(defaults	to	
CENTER).

expand

Specify	(with	a	boolean	value)	if	the	space	allocated	around	the	widget
should	grow	and	shrink	as	the	window	is	resized.	Note	that	without	the
fill	option,	the	widget	itself	will	not	be	resized,	but	there	will	be	more
space	around	it.
Specify	if	the	widget	should	fill	in	the	space	allocated	around	it,	in	one

fill
or	both	of	the	x	and	y	dimensions.	Can	be	BOTH,	X,	Y	or	NONE	(defaults	to	
NONE).	When	used	with	expand=True,	the	widget	will	grow	when	the
window	is	resized;	this	is	useful	for	widgets	which	should	always	take
up	as	much	of	the	screen	as	possible,	such	as	the	main	view	area	of	the
application.

padx,	
pady,	
ipadx,	
ipady

Specify	the	amount	of	space	to	place	inside	or	around	this	widget,	in
pixels.	padx	and	pady	will	place	a	certain	amount	of	background	space
around	the	widget.	ipadx	and	ipady	will	add	space	inside	the	widget,
making	it	larger.

Experimenting	with	different	combinations	of	packing	order,	and	different
combinations	of	side,	anchor,	expand,	fill,	and	the	pad	options,	will	assist	in
understanding	the	behaviour	of	these	settings.

Frames
The	pack	options,	side	and	anchor,	only	have	limited	capability	for	layout.	To	give	us
many	more	options	we	use	a	widget	called	Frame.	The	Frame	widget	is	a	blank	widget
used	for	simply	containing	widgets.	This	is	very	useful	for	creating	simple	through	to
complex	GUI	layouts	as	it	can	give	us	the	ability	to	partition	widgets	into	groups	and
position	each	group.

In	the	next	section,	we	are	going	to	build	a	simple	game	which	involves	moving	a
circle	around	the	screen.	We	will	have	four	buttons	to	represent	up/down/left/right
controls,	and	a	blank	“game	screen”	area	which	will	show	the	movement	of	the	circle.
For	now,	we	will	investigate	the	layout	of	the	GUI,	using	Labels.	Shortly,	we	will
replace	these	labels	with	other	kinds	of	widgets.

import	tkinter	as	tk

root	=	tk.Tk()
root.title("Look	what	we	can	do	with	frames")

#	"Button"	labels

controls	=	tk.Frame(root)

up	=	tk.Label(controls,	text="UP")
up.pack(side=tk.TOP)

left	=	tk.Label(controls,	text="LEFT")
left.pack(side=tk.LEFT)

down	=	tk.Label(controls,	text="DOWN")
down.pack(side=tk.LEFT)

right	=	tk.Label(controls,	text="RIGHT")
right.pack(side=tk.LEFT)

controls.pack(side=tk.LEFT)

#	screen	Label

screen	=	tk.Label(root,	text="screen",	bg="light	blue",	width=38,	height=16)
screen.pack(side=tk.LEFT,	expand=True,	fill=tk.BOTH)

root.mainloop()

Similar	to	the	Label,	the	arguments	to	the	Frame	constructor	are	the	parent	widget	(in
this	case,	root),	and	any	configuration	options.

The	code	for	the	Labels	is	still	mostly	the	same	as	we	have	seen	before.	The	biggest
difference	is	the	parent	widget	is	no	longer	root.	For	the	“buttons”	we	have	given	the
parent	as	controls.	This	makes	the	labels	get	packed	into	the	controls	Frame.	For	the	
screen	label,	we	set	a	width	and	height	to	make	it	fairly	large	and	square.
Experimenting	with	different	values	for	width	and	height	will	eventually	give	an
acceptable	size.	We	also	set	the	screen	to	expand	and	fill	when	the	window	changes
size.

Let’s	now	save	our	code	to	frame_game.py	and	see	what	we	have	created.	For	clarity,	we
also	show	a	digitally	altered	image	indicating	the	borders	of	the	labels	(in	green)	and
the	frame	(in	red).

	

The	four	control	labels	have	been	arranged	within	the	frame	as	if	they	were	arranged
in	their	own	window.	The	frame	can	then	be	placed	within	the	window,	and	all	four
buttons	will	stay	grouped	together.	If	this	layout	was	attempted	using	the	side	and	
anchor	options	alone,	it	would	be	very	difficult.

Buttons
Having	Labels	representing	buttons	does	not	have	much	point.	Let’s	now	introduce	the
real	thing,	the	Button	widget.	We	now	rewrite	our	code	from	above	using	the	Button
widget	instead	of	Label	widgets.	We	also	want	the	buttons	to	appear	the	same	size,	so
we	will	set	a	width	for	each	one.	Because	all	four	should	have	the	same	width,	we	will
store	the	width	value	as	a	constant,	BUTTON_WIDTH,	to	ensure	we	are	always	using	the
same	width.

import	tkinter	as	tk

BUTTON_WIDTH	=	10

root	=	tk.Tk()
root.title("Buttons	are	good")

#	Buttons
controls	=	tk.Frame(root)

up	=	tk.Button(controls,	text="UP",	width=BUTTON_WIDTH)
up.pack(side=tk.TOP)

left	=	tk.Button(controls,	text="LEFT",	width=BUTTON_WIDTH)
left.pack(side=tk.LEFT)

down	=	tk.Button(controls,	text="DOWN",	width=BUTTON_WIDTH)
down.pack(side=tk.LEFT)

right	=	tk.Button(controls,	text="RIGHT",	width=BUTTON_WIDTH)
right.pack(side=tk.RIGHT)

controls.pack(side=tk.LEFT)

#	screen	Label

screen	=	tk.Label(root,	text="screen",	bg="light	blue",	width=38,	height=16)
screen.pack(side=tk.LEFT,	expand=True,	fill=tk.BOTH)

root.mainloop()

Creating	the	Button	widgets	is	again	rather	simple	as	they	use	similar	arguments	to
other	widgets	we	have	used.	Let’s	now	save	our	code	as	game_screen.py	and	have	a	look
at	our	new	GUI.

Making	Buttons	Work

We	would	like	to	add	functionality	to	our	buttons,	so	that	pressing	the	button	will
execute	a	task.	We	do	this	by	writing	a	function	that	tkInter	can	call	when	the	button
is	pressed.	When	we	create	the	Button,	we	tell	it	what	function	to	use	through	the	
command	argument.	For	now,	we	will	get	the	buttons	to	simply	print	to	the	console.	We
write	four	functions,	one	for	each	button:

import	tkinter	as	tk

BUTTON_WIDTH	=	10

root	=	tk.Tk()
root.title("Buttons	are	good")

#	Functions	for	the	buttons	to	call

def	push_up():
				print("UP")

def	push_down():
				print("DOWN")

def	push_left():
				print("LEFT")

def	push_right():
				print("RIGHT")

#	Buttons

controls	=	tk.Frame(root)

up	=	tk.Button(controls,	text="UP",	width=BUTTON_WIDTH,	command=push_up)
up.pack(side=tk.TOP)

left	=	tk.Button(controls,	text="LEFT",	width=BUTTON_WIDTH,	command=push_left)
left.pack(side=tk.LEFT)

down	=	tk.Button(controls,	text="DOWN",	width=BUTTON_WIDTH,	command=push_down)
down.pack(side=tk.LEFT)

right	=	tk.Button(controls,	text="RIGHT",	width=BUTTON_WIDTH,	command=push_right)
right.pack(side=tk.LEFT)

controls.pack(side=tk.LEFT)

#	screen	Label

screen	=	tk.Label(root,	text="screen",	bg="light	blue",	width=38,	height=16)
screen.pack(side=tk.LEFT,	expand=True,	fill=tk.BOTH)

root.mainloop()

The	command	argument	takes	a	function,	which	is	called	when	the	button	is	pressed.	We
do	not	want	to	execute	the	function,	we	want	to	take	the	function	itself	and	give	it	to
the	Button.	To	do	this,	we	do	not	place	parentheses	after	the	function	name.	By
passing	the	function	itself	to	the	Button,	we	give	the	Button	the	ability	to	call	the
function	at	any	time	(in	particular,	whenever	the	button	is	pressed).	In	this	situation,
the	function	is	known	as	a	callback	function,	because	we	give	the	Button	the	ability	to
call	back	to	a	function	in	the	application	code.

This	code	is	available	as	game_screen1.py.	Each	time	we	press	a	button	it	prints	out	to
the	console.

The	Entry	Widget
We	have	seen	how	to	interact	with	the	user	through	buttons,	but	what	about	other
methods,	such	as	text?	tkInter	has	a	widget	for	this	called	the	Entry	widget.	The	entry
widget	is	a	small	box	that	the	user	can	enter	text	into.

We	will	start	with	a	simple	application	that	evaluates	an	expression	and	prints	the
result	to	the	console.	We	will	require	a	Label	to	label	our	Entry	widget,	the	Entry
widget,	and	a	Button	to	evaluate	the	expression.	The	code	is	as	follows:

import	tkinter	as	tk

root	=	tk.Tk()

root.title('Expression	Evaluator')

label	=	tk.Label(root,	text='Enter	Expression:	')
label.pack(side=tk.LEFT)

entry	=	tk.Entry(root,	width=20)
entry.pack(side=tk.LEFT)

def	evaluate():
				expression	=	entry.get()
				try:
								result	=	eval(expression)
								print("The	Result	is:	{0}".format(result))
				except	Exception	as	e:
								print("An	error	occurred:	{0}".format(e))

calc	=	tk.Button(root,	text="Evaluate",	command=evaluate)
calc.pack(side=tk.LEFT)

root.mainloop()

The	second	widget	we	create	is	the	Entry	widget.	We	have	also	used	the	optional
argument	width	to	specify	that	we	want	the	text	area	to	be	20	characters	wide.	We
then	wrote	the	evaluate	function	to	take	the	input	and	print	the	result.	In	the	first	line
we	used	the	get	method	of	the	Entry	widget.	This	method	returns	what	is	in	the	text
area	as	a	string.	In	this	case	it	is	our	expression.	The	next	line	uses	Python’s	eval
function.	eval	takes	a	string	representing	a	Python	expression	and	evaluates	it,
returning	the	result.

>>>	eval("2+5*4")
22

It	is	possible	that	the	user	has	entered	an	invalid	expression	or	an	expression	that	will
raise	an	exception,	so	we	place	a	try-except	statement	around	it	to	print	out	the	error
message.	The	last	thing	the	evaluate	function	does	is	print	out	the	result	with	a
message.	Let’s	save	our	code	as	simple_evaluator.py	and	test	it.

It	would	be	good,	however,	to	be	able	to	do	more	than	just	print	to	the	console.

Changing	Widgets
All	widgets	also	have	a	method	that	allows	us	to	change	the	way	a	widget	looks.	This
method	is	the	config	method.	It	has	the	same	optional	arguments	as	the	constructor	of
the	widget.	Let’s	extend	our	code	so	that	instead	of	printing	the	result	to	the	console,
it	changes	the	text	in	a	Label	so	that	the	result	is	in	the	application	itself.	If	there	is	an
error	message	to	show,	we	will	also	change	the	background	colour	to	red.	To	make
this	work,	we	must	also	change	the	background	colour	back	to	grey	when	we	are
showing	a	result,	otherwise	the	label	would	stay	red	after	an	error	message	is	shown.

import	tkinter	as	tk

root	=	tk.Tk()

root.title('Expression	Evaluator')

label	=	tk.Label(root,	text='Enter	Expression:	')
label.pack(side=tk.LEFT)

entry	=	tk.Entry(root,	width=20)
entry.pack(side=tk.LEFT)

def	evaluate():
				expression	=	entry.get()
				try:
								result	=	eval(expression)
								answer.config(text="The	Result	is:	{0}".format(result),	bg="grey")
				except	Exception	as	e:
								answer.config(text="An	error	occurred:	{0}".format(e),	bg="red")

calc	=	tk.Button(root,	text="Evaluate",	command=evaluate)
calc.pack(side=tk.LEFT)

answer	=	tk.Label(root,	text="",	bg="grey")
answer.pack(side=tk.LEFT)

root.mainloop()

This	code	is	almost	the	same,	we	have	just	added	a	new	Label	and	changed	the	last
line	in	the	evaluate	function.	The	change	to	the	last	line	calls	config	on	our	new	Label,	
answer	and	sets	the	text	to	the	result.

Now	saving	our	code	as	simple_evaluator_nc.py,	we	can	have	a	look	at	our	new
application.

When	an	error	message	is	shown,	the	label	will	keep	the	error	message	visible	until	a
new	expression	is	entered.	This	may	be	discomforting	for	the	user,	so	we	consider
ways	to	fix	this	issue.	One	option	would	be	to	add	a	second	button	that	resets	the
label	back	to	grey	and	clears	the	message.	It	is	also	possible	to	reset	the	label
whenever	the	user	resumes	typing	in	the	Entry	box.

So	far	we	have	covered	a	lot	of	different	GUI	widgets	and	aspects	of	creating	GUIs.
Yet	we	have	been	writing	our	code	in	a	rather	linear	fashion.	In	the	remainder	of	this
section,	and	in	the	next	section,	we	will	look	at	restructuring	our	GUI	programs	using
classes.	This	is	to	make	the	source	code	easier	to	read	and	maintain.

GUI	Design	Using	Classes
Classes	can	be	used	to	simplify	our	GUI	code,	especially	as	the	GUI	and	program	gets
more	complex.	We	are	going	to	rewrite	our	expression	evaluator	using	a	class.	The
code	is	below:

import	tkinter	as	tk

class	EvalApp(object):
				"""Simple	application	to	allow	a	user	to	enter	an	expression	and	evaluate	it.
				"""

				def	__init__(self,	master):
								"""Initialise	the	expression	evaluator's	application	window.

								Parameters:
												master	(Tk):	Main	window	for	application.
								"""
								self._master	=	master
								master.title('Expression	Evaluator')
								self._num	=	0.0

								expressionLbl	=	tk.Label(master,	text='Enter	Expression:	')
								expressionLbl.pack(side=tk.LEFT)

								self._entry	=	tk.Entry(master,	width=20)
								self._entry.pack(side=tk.LEFT)
								self._entry.insert(tk.END,	str(self.num))

								evalBtn	=	tk.Button(master,	text="Evaluate",	command=self.evaluate)
								evalBtn.pack(side=tk.LEFT)

								self._result	=	tk.Label(master,	text="",	bg="grey")
								self._result.pack(side=tk.LEFT,	padx=20)

				def	evaluate(self):
								"""Evaluates	the	expression	in	the	Entry	widget	and	
											displays	the	result	in	the	result	Label.
								"""
								try:
												self._num	=	eval(self._entry.get())
												self._result.config(text="The	Result	is:	{0}".format(self._num),
																																bg="grey")
								except	Exception	as	e:
												self._result.config(text="An	error	occurred:	{0}".format(e),	bg="red")

root	=	tk.Tk()
app	=	EvalApp(root)
root.mainloop()

The	most	noticeable	change	is	the	order	of	the	code,	the	class	needs	to	be	written
first	so	that	the	class	is	defined	before	we	try	to	use	it.	The	next	thing	to	notice	is	the
use	of	master	as	a	parameter	in	the	class’	constructor,	and	as	the	parent	class	for	the
widgets.	master	is	used	by	convention	to	signify	the	“highest	level”	class.	master	is
passed	the	value	of	Tk	when	the	EvalApp	object	is	created.	We	have	added	a	self._num
instance	variable	as	well,	this	is	the	same	as	the	result	variable	we	used	before,	we
also	use	it	when	creating	the	Entry	widget	to	give	our	application	a	slightly	more
professional	look.	The	first	widget	we	create	is	a	Label,	but	we	do	not	assign	it	as	an
instance	variable.	As	we	just	want	this	widget	to	display	and	not	access	it	later,	we	do
not	need	to	store	it	in	the	class	structure.	We	do	the	same	for	the	Button	widget.

When	we	create	the	Entry	widget	this	time	we	also	use	the	insert	method.	insert
inserts	a	string	into	the	Entry	widget	at	a	location,	in	this	case	the	string	of	self._num	at
the	end	of	any	text	in	there.	The	rest	of	the	class	is	mostly	the	same	code	we	had
before.

After	the	class	definition	we	have	the	Tk	code.	In	this	case	we	only	need	three	lines
because	our	class	does	all	the	work.	The	first	and	last	line	we	already	know.	The
middle	line	creates	an	instance	of	our	class	passing	root	into	the	constructor.	As	root
is	an	instance	of	Tk,	we	are	passing	in	a	Tk	object.

We	can	now	save	our	code	as	evaluator_class.py	and	have	a	look.

Apart	from	the	small	changes	to	the	GUI	that	we	made	it	looks	and	works	exactly	the
same	as	what	we	had	before.

Three	people	have	just	fallen	past	that	window

Graphical	User	Interfaces	–	Part	2
Structuring	GUI	Code
When	writing	GUI	code,	we	often	want	to	group	widgets.	This	typically	happens	when
we	want	these	widgets	to	appear	together	in	our	GUI	and/or	when	these	widgets,	as	a
group,	have	a	role	in	the	program.	We	can	think	of	this	as	creating	our	own	widget.
We	will	take	our	game	screen	example	from	the	previous	section	as	an	example.	The
four	directional	buttons	could	be	grouped	together	into	a	single	“controls”	widget
that	can	be	dealt	with	separately.	To	do	this,	we	will	write	a	class	that	inherits	from	
Frame	and	contains	our	directional	buttons.

import	tkinter	as	tk

class	Controls(tk.Frame):
				"""Widget	containing	four	directional	buttons."""

				BUTTON_WIDTH	=	10

				def	__init__(self,	parent):
								"""Set	up	the	four	directional	buttons	in	the	frame.

								Parameters:
												parent	(Tk):	Window	in	which	this	widget	is	to	be	placed.
								"""
								super().__init__(parent)

								upBtn	=	tk.Button(self,	text="UP",	width=self.BUTTON_WIDTH,
																										command=self.push_up)

								upBtn.pack(side=tk.TOP)
								leftBtn	=	tk.Button(self,	text="LEFT",	width=self.BUTTON_WIDTH,
																												command=self.push_left)
								leftBtn.pack(side=tk.LEFT)
								downBtn	=	tk.Button(self,	text="DOWN",	width=self.BUTTON_WIDTH,
																												command=self.push_down)
								downBtn.pack(side=tk.LEFT)
								rightBtn	=	tk.Button(self,	text="RIGHT",	width=self.BUTTON_WIDTH,
																													command=self.push_right)
								rightBtn.pack(side=tk.LEFT)

				def	push_up(self):
								print("UP")

				def	push_down(self):
								print("DOWN")

				def	push_left(self):
								print("LEFT")

				def	push_right(self):
								print("RIGHT")

class	GameApp(object):
				"""Basic	game	window	design."""

				def	__init__(self,	master):
								"""Initialise	the	game	window	layout
											with	four	directional	buttons	widget	and	a	screen.

								Parameters:
												master	(Tk):	Main	window	for	application.
								"""
								master.title("Buttons	are	good")
								controls	=	Controls(master)
								controls.pack(side=tk.LEFT)
								screen	=	tk.Label(master,	text="screen",	bg="light	blue",	
																										width=38,	height=16)
								screen.pack(side=tk.LEFT,	expand=True,	fill=tk.BOTH)

root	=	tk.Tk()
app	=	GameApp(root)
root.mainloop()

The	first	class	we	wrote	is	our	Controls	class,	to	represent	the	directional	buttons
widget.	This	class	inherits	from	Frame,	so	the	__init__	method	calls	Super().__init__
with	the	argument	parent.	Conventionally	parent	is	the	name	used	for	the	widget	that
will	contain	this	one,	i.e.	its	parent.	In	this	case,	the	Controls	widget	will	be	contained
inside	the	root	Tk	object.	We	might	consider	another	application	where	the	Controls
widget	is	packed	inside	a	different	container	widget,	such	as	another	Frame.

The	__init__	method	then	creates	our	four	buttons.	Again,	as	we	are	not	expecting	to
update	or	get	information	from	our	buttons	we	do	not	need	to	store	them	in	class
variables.	We	want	to	pack	the	buttons	into	the	Controls	instance	(recall	that	Controls
is	just	a	specialisation	of	a	Frame,	so	we	can	pack	widgets	into	it).	To	do	this,	we	set	the
parent	widget	of	the	buttons	as	self,	the	Controls	object.

The	Controls	class	contains	four	more	methods,	which	are	used	as	the	callbacks	for
the	buttons.	By	writing	these	methods	in	the	Controls	class,	we	make	it	clear	that	they
will	only	be	used	by	the	four	buttons	contained	in	this	widget.	It	also	gives	these
methods	access	to	any	information	in	the	Controls	object,	which	might	be	necessary	if
the	buttons	needed	to	do	more	complex	tasks.

In	the	GameApp	class	we	now	only	need	to	create	two	widgets,	our	Controls	widget	and
the	Label	widget.	(Where	we	are	using	the	Label	to	represent	the	game’s	screen.)

We	can	now	save	our	code	as	game_screen_classes.py	and	have	a	look.

Writing	the	code	this	way,	where	we	group	sets	of	related	widgets	into	classes,	makes
the	code	look	very	simple,	and	it	is.	It	is	easy	code	to	read,	debug	and	modify,	which
is	why	this	method	is	preferred.

As	well	as	Frame,	tkInter	includes	other	blank	container	widgets	to	arrange	widgets
inside.	The	Toplevel	widget	represents	a	new	blank	window.	This	can	be	useful	for
creating	dialog	boxes	within	an	application,	by	creating	a	class	which	inherits	from	
Toplevel.

The	Canvas
We	have	already	seen	the	Label,	Button	and	Entry	widgets	and	now	we	consider	the	
Canvas	widget.	The	Canvas	widget	represents	a	space	for	drawing	objects	on	the	screen,
such	as	lines,	ovals	and	polygons.	The	following	example	shows	the	use	of	some	of	the
drawing	methods	available.

import	tkinter	as	tk

class	CanvasApp(object):
				def	__init__(self,	master):
								master.title("Canvas")

								self._canvas	=	tk.Canvas(master,	bg="white",	width=500,	height=500)
								self._canvas.pack(side=tk.TOP,	expand=True,	fill=tk.BOTH)

								frame	=	tk.Frame(master)
								drawBtn	=	tk.Button(frame,	text="Draw",	command=self.draw)
								drawBtn.pack(side=tk.LEFT)
								dltBtn	=	tk.Button(frame,	text="Delete",	command=self.delete)
								dltBtn.pack(side=tk.LEFT)
								frame.pack(side=tk.TOP)

				def	draw(self):
								#	Example	1
								self._canvas.create_line([(0,	0),	(150,	50),	(200,	200)])

								#	Example	2
								self._canvas.create_polygon([(300,	50),	(330,	80),	(300,	140),	(270,	80)])

								#	Example	3
								self._canvas.create_oval(250,	200,	300,	300,	outline="red",	width=5)

								#	Example	4
								self._canvas.create_rectangle(350,	350,	431,	400,	fill="blue")

								#	Example	5
								centre	=	(100,	400)
								radius	=	50
								self._canvas.create_oval(centre[0]-radius,	centre[1]-radius,
																																	centre[0]+radius,	centre[1]+radius)
								self._canvas.create_rectangle(centre[0]-radius,	centre[1]-radius,
																																						centre[0]+radius,	centre[1]+radius)

				def	delete(self):
								self._canvas.delete(tk.ALL)

root	=	tk.Tk()
app	=	CanvasApp(root)
root.mainloop()

This	code	is	available	as	canvas.py.	When	we	run	the	script,	we	see	a	blank	white
screen	with	two	buttons.	When	we	click	on	the	“Draw”	button,	we	see	this	result:

First,	the	CanvasApp	creates	and	packs	a	Canvas	with	a	white	background,	and	a	width
and	height	of	500	pixels.	Each	of	the	drawing	methods	of	the	Canvas	use	a	coordinate
system	in	pixels,	where	(0,	0)	is	the	top-left,	the	positive	x	direction	is	to	the	right,
and	the	positive	y	direction	is	down	the	screen.	Note	that	this	is	different	from	the
standard	Cartesian	coordinate	system	where	the	positive	y	direction	is	up.	The
coordinates	of	the	bottom-right	corner	of	the	canvas	are	the	same	as	the	width	and
height	of	the	canvas.

Note,	we	did	not	create	a	separate	widget	for	the	two	control	buttons,	Draw	and	Delete.
As	there	are	only	two	buttons,	this	example	did	not	call	for	the	creation	of	a	new
widget.

The	first	object	drawn	on	the	canvas	is	a	line.	The	create_line	method	takes	a
sequence	of	x	and	y	coordinates,	and	draws	a	straight	line	between	each	pair	of
coordinates.	The	example	above	shows	a	line	drawn	from	(0,	0)	in	the	top-left	corner,
through	(150,	50),	ending	at	(200,	200).	create_line	can	also	be	used	to	draw	a	curve	or
freehand	line,	by	drawing	straight	lines	with	many	coordinates	placed	very	close
together.	This	does	not	make	an	exact	curve,	but	it	will	appear	very	close	to	a	curve
when	viewed	on	a	monitor.

The	second	object	drawn	here	is	a	polygon.	Similar	to	drawing	a	line,	it	takes	a
sequence	of	coordinates.	The	polygon	is	then	drawn	with	these	coordinates	as	the
vertices,	and	then	the	polygon	is	filled	in	(coloured	black	by	default).	This	example
shows	a	kite	shape,	drawn	in	the	order	of	the	coordinates	specified.	Note	that	unlike
the	create_line	method,	create_polygon	will	join	the	last	pair	of	coordinates	back	to	the
first	(which	is	necessary	to	draw	a	closed	polygon).

Example	3	above	draws	a	red	oval.	Here,	we	specify	four	coordinates,	representing
the	leftmost	x-coordinate,	the	uppermost	y-coordinate,	the	rightmost	x-coordinate,	and
the	lowermost	y-coordinate.	Another	way	to	visualise	the	drawing	of	the	oval	is	to
imagine	a	rectangle	drawn	around	it,	such	as	the	square	and	circle	arrangement	in
the	above	image.	When	drawing	the	oval,	we	specify	the	top-left	and	bottom-right
corners	of	the	surrounding	rectangle,	and	the	oval	is	drawn	inside.	Here,	we	also
make	use	of	two	optional	arguments,	outline	and	width.	Each	of	the	Canvas	“create”
methods	can	accept	optional	arguments	to	specify	other	details,	such	as	colour	and
line	width.	outline	and	width	are	used	to	specify	the	colour	and	width	of	the	oval’s
outline.

Example	4	draws	a	blue	rectangle.	To	do	this,	we	specify	the	coordinates	of	the	top-
left	and	bottom-right	corners	of	the	rectangle.	Here	we	have	also	used	another
optional	argument,	fill,	to	specify	the	internal	colour	of	the	rectangle.	By	default,
ovals	and	rectangles	are	transparent.	Notice	though	that	the	rectangle	still	has	a
black	border,	but	it	can	be	hard	to	spot,	because	it	is	only	one	pixel	wide.	To	set	the
entire	rectangle	to	the	same	colour,	we	would	either	set	the	outline	to	the	same
colour,	or	set	the	outline	width	to	0	to	remove	the	outline	entirely.

In	the	final	example,	we	draw	a	circle	by	specifying	a	centre	and	radius,	then	using
simple	arithmetic	to	create	an	oval	at	the	desired	coordinates.	We	also	draw	a	square
at	the	same	coordinates.	If	we	were	writing	an	application	that	involved	drawing	a	lot
of	circles,	we	might	consider	writing	a	method	that	takes	a	pair	of	coordinates	and	a
radius,	and	draws	a	circle	centred	at	those	coordinates.	This	would	make	the	drawing

part	of	the	application	much	easier	to	write.

The	Canvas	has	a	delete	method,	which	can	be	used	to	remove	drawings	from	the
screen.	Clicking	on	the	“Delete”	button	will	call	self._canvas.delete(tk.ALL),	which
deletes	all	the	drawings.	Clicking	on	“Draw”	will	bring	them	back.	Note	that	clicking
on	“Draw”	multiple	times	will	actually	draw	a	complete	set	of	new	objects	on	the
canvas	each	time,	but	because	they	all	overlap,	we	only	see	one	set	of	drawings.

Customising	Widgets
We	will	continue	with	the	game	example	and	replace	the	screen	label	with	a	Canvas.	In
doing	this,	we	will	need	to	think	about	the	logic	of	the	application.	What	will	be	the
initial	setup	of	the	screen	area?	What	information	about	the	game	will	need	to	be
stored	in	the	program?	How	will	user	interactions	change	the	internal	state,	and	how
do	we	show	this	change	in	the	screen?

In	this	simple	example,	the	game	involves	a	circle	shown	on	the	screen,	initially	in	the
centre.	Pressing	the	four	buttons	will	move	the	circle	around	the	screen,	drawing
lines	behind	it	to	form	a	path.	To	do	this,	the	application	will	need	to	keep	track	of
where	the	circle	is,	and	all	the	coordinates	of	where	it	has	been.	When	updating	a
figure	or	drawing	on	a	Canvas	widget,	it	can	often	be	easiest	to	clear	the	entire	canvas,
then	redraw	everything	from	scratch.

Now	that	we	have	investigated	the	functionality	required	for	the	canvas,	we	realise
that	each	of	the	buttons	needs	to	take	a	number	of	steps	to	complete	its	task.	Because
this	all	seems	to	be	the	work	of	the	Canvas,	we	will	customise	Canvas	to	have	extra
methods	and	attributes	to	fit	our	situation.	That	is,	we	will	write	a	subclass	of	Canvas
which	has	this	functionality.

class	Screen(tk.Canvas):
				"""A	customised	Canvas	that	can	move	a	circle	and	draw	a	path."""
				SIZE	=	230		#	The	size	of	the	screen.
				RADIUS	=	5		#	The	radius	of	the	circle
				MOVE	=	10			#	The	amount	to	move	on	each	step

				def	__init__(self,	parent):
								"""Create	and	initialise	a	screen.

								Parameters:
												parent	(Tk):	Window	in	which	this	screen	is	to	be	placed.
								"""
								super().__init__(parent,	bg="light	blue",	width=self.SIZE,
																									height=self.SIZE)

								#	Start	in	the	centre,	without	any	points	in	the	path.
								self._x,	self._y	=	(self.SIZE	/	2,	self.SIZE	/	2)
								self._path	=	[(self._x,	self._y)]
								self._redraw()

				def	_redraw(self):
								"""Redraw	the	game	screen	after	a	move."""
								self.delete(tk.ALL)
								coords	=	(self._x	-	self.RADIUS,
																		self._y	-	self.RADIUS,
																		self._x	+	self.RADIUS,
																		self._y	+	self.RADIUS)
								self.create_oval(coords,	fill="black",	width=0)
								if	len(self._path)	>	1:
												self.create_line(self._path)

				def	_move(self,	dx,	dy):
								"""Move	the	circle	by	a	given	amount.	

								Parameters:
												dx	(int):	Amount	to	move	in	the	x-coordinate.
												dy	(int):	Amount	to	move	in	the	y-coordinate.
								"""
								self._x	+=	dx
								self._y	+=	dy
								self._path.append((self._x,	self._y))
								self._redraw()

				def	move_up(self):
								"""Move	the	circle	up."""
								self._move(0,	-self.MOVE)

				def	move_down(self):
								"""Move	the	circle	down."""
								self._move(0,	self.MOVE)

				def	move_left(self):
								"""Move	the	circle	left."""
								self._move(-self.MOVE,	0)

				def	move_right(self):
								"""Move	the	circle	right."""
								self._move(self.MOVE,	0)

This	Screen	will	store	the	current	coordinates	of	the	circle,	and	a	list	of	coordinates	it
has	been	to.	The	private	method	_redraw	will	delete	and	redraw	the	circle	and	path	on
the	screen,	which	is	done	at	the	beginning	and	after	every	movement.	The	methods	
move_up,	move_down,	move_left	and	move_right	will	perform	the	actions	required	by	the	four
buttons.	Note	that,	as	Screen	inherits	from	Canvas,	it	can	make	method	calls	such	as	
self.delete(tk.ALL)	and	self.create_oval	to	draw	on	the	canvas.	We	can	now	modify	the	
Controls	and	GameApp	classes	to	use	a	Screen:

class	Controls(tk.Frame):
				"""Widget	containing	four	directional	buttons."""

				BUTTON_WIDTH	=	10

				def	__init__(self,	parent):
								"""Set	up	the	four	directional	buttons	in	the	frame.

								Parameters:
												parent	(Tk):	Window	in	which	this	widget	is	to	be	placed.
												screen	(Screen):	Screen	which	has	the	movement	methods.
								"""
								super().__init__(parent)

								upBtn	=	tk.Button(self,	text="UP",	width=self.BUTTON_WIDTH,
																										command=screen.move_up)
								upBtn.pack(side=tk.TOP)
								leftBtn	=	tk.Button(self,	text="LEFT",	width=self.BUTTON_WIDTH,
																												command=screen.move_left)
								leftBtn.pack(side=tk.LEFT)
								downBtn	=	tk.Button(self,	text="DOWN",	width=self.BUTTON_WIDTH,
																												command=screen.move_down)
								downBtn.pack(side=tk.LEFT)
								rightBtn	=	tk.Button(self,	text="RIGHT",	width=self.BUTTON_WIDTH,
																													command=screen.move_right)
								rightBtn.pack(side=tk.LEFT)

class	GameApp(object):

				"""Basic	game	window	design."""

				def	__init__(self,	master):
								"""Initialise	the	game	window	layout	with
											four	directional	buttons	and	a	screen.

								Parameters:
												master	(Tk):	Main	window	for	application.
								"""
								master.title("Game")
								screen	=	Screen(master)
								controls	=	Controls(master,	screen)
								controls.pack(side=tk.LEFT)
								screen.pack(side=tk.LEFT,	expand=True,	fill=tk.BOTH)

The	updated	Controls	class	now	also	requires	the	Screen	object,	and	it	uses	this	to
access	the	four	methods	needed	as	Button	callbacks.	The	GameApp	is	also	modified	to
create	a	Screen	instead	of	a	Label.	This	code	is	available	to	download	as	game_canvas.py.
When	we	interact	with	this	program,	we	see	this	result:

Aside:	Separating	the	Controls	and	Screen

The	constructor	of	the	Controls	class	above	requires	an	object	called	screen,	and
it	uses	this	to	access	move_up,	move_left,	move_down	and	move_right,	which	should	be
methods	that	perform	the	relevant	actions.	For	this	program,	there	is	no
problem,	but	what	if	we	wanted	to	modify	the	program?	There	are	several
potential	issues	to	watch	out	for.

If	we	modified	(or	replaced)	the	Screen	and	renamed	the	four	movement
methods,	we	would	need	to	modify	the	code	in	Controls.	Worse,	if	the	methods
were	moved	into	separate	classes,	or	made	into	top-level	functions,	we	could	no
longer	pass	in	a	single	object	to	Controls	which	can	access	all	the	methods.	This
is	still	not	a	major	issue	in	an	application	this	small,	but	in	a	larger	application,
many	other	classes	could	be	dependent	on	the	Screen,	which	would	cause
problems	when	we	tried	to	change	the	Screen.	We	could	also	imagine	a	situation
where	multiple	Controls	widgets	were	needed,	each	requiring	different	method
names.

To	fix	these	issues,	we	can	modify	the	Controls	class	to	require	the	four	callback
functions	directly;	then	the	internals	of	Controls	would	still	work,	even	if	the
methods	were	renamed	or	moved.	We	then	have	this	result:

<div	class="language-python	highlighter-rouge"><div	class="highlight"><pre	
class="highlight"><code>class	<span	
class="nc">Controls(tk
.Frame):
BUTTON_WIDTH	=	<span	
class="mi">10
def	__init__
(self,	<span	
class="n">parent,	up
,	down,	
left	right):

				super().
__init__(<span	

class="n">parent)
				upBtn	=	<span	
class="n">tk.Button<span	
class="p">(self,	<span	
class="n">text="UP"<span	
class="p">,	width=<span	
class="bp">self.<span	
class="n">BUTTON_WIDTH,
																						command=
up)
				upBtn.<span	
class="n">pack(side<span	
class="o">=tk.<span	
class="n">TOP)
				leftBtn	=	<span	
class="n">tk.Button<span	
class="p">(self,	<span	
class="n">text="LEFT"
,	width=
self.<span	
class="n">BUTTON_WIDTH,
																								command=
left)
				leftBtn.<span	
class="n">pack(side<span	
class="o">=tk.<span	
class="n">LEFT)
				downBtn	=	<span	
class="n">tk.Button<span	
class="p">(self,	<span	
class="n">text="DOWN"
,	width=
self.<span	
class="n">BUTTON_WIDTH,
																								command=
down)
				downBtn.<span	
class="n">pack(side<span	
class="o">=tk.<span	
class="n">LEFT)
				rightBtn	=	<span	
class="n">Button(self
,	text=
"RIGHT",	<span	
class="n">width=self
.BUTTON_WIDTH,

																						command=
right)
				rightBtn.<span	
class="n">pack(side<span	
class="o">=tk.<span	
class="n">LEFT)

class	GameApp(object):	def	init(self,	master):	master.title(“Game”)
screen	=	Screen(master)	controls	=	Controls(master,	screen.move_up,
screen.move_down,	screen.move_left,	screen.move_right)
controls.pack(side=tk.LEFT)	screen.pack(side=tk.LEFT,	expand=True,
fill=tk.BOTH)	</code></pre></div>	</div>

The	GameApp	is	also	modified	to	access	the	respective	methods	of	Screen.	In	a
sense,	we	have	now	completely	separated	the	Controls	and	Screen	classes,	and
the	interaction	between	them	is	defined	entirely	by	the	GameApp	class.	In	a	larger
application,	moving	all	of	this	control	to	the	one	class	will	make	it	much	easier

to	treat	all	the	other	classes	as	distinct	from	each	other.

The	implementation	for	this	code	is	provided	in	game_canvas_sep_controls.py.

Events
The	program	we	wrote	above	feels	difficult	to	use.	In	particular,	the	use	of	the	four
buttons	is	unintuitive.	We	would	like	the	user	to	interact	directly	with	the	canvas
using	mouse	gestures.	tkInter	provides	a	means	of	doing	this	using	events.	An	event
is	a	trigger	which	occurs	when	the	user	makes	an	action	with	the	mouse	or	keyboard.
For	example,	when	the	user	makes	a	left	click,	tkInter	will	trigger	a	<Button-1>	event,
and	when	the	user	drags	the	mouse	with	a	left	click,	tkInter	will	trigger	a	<B1-Motion>
event.	To	use	these	types	of	event,	we	must	bind	the	event	to	a	callback	function,
similar	to	a	callback	function	for	a	Button.	Widgets	have	a	method	bind	which	takes	an
event	name	(as	a	string)	and	a	callback	function.	The	function	must	take	one
argument,	typically	called	event,	which	contains	information	on	the	trigger	that
occurred.	For	example,	if	the	mouse	was	clicked	or	moved,	the	event	would	contain
the	coordinates	of	the	cursor.

As	an	example,	we	will	modify	the	game	screen	example	so	that	clicking	and	dragging
will	move	the	circle.	We	should	again	consider	the	application	logic:	what	should
happen	when	the	mouse	is	pressed	or	released?	What	should	happen	when	the
pressed	mouse	is	dragged	slightly?	If	the	mouse	is	pressed,	we	should	look	to	see	if
we	have	clicked	on	the	circle,	and	if	so	mark	it	as	being	“selected”.	When	the	mouse
is	dragged,	we	should	see	if	the	circle	has	been	selected,	and	if	so	move	it
accordingly.	When	the	mouse	is	released,	then	we	mark	the	circle	as	“deselected”.

import	tkinter	as	tk
import	math

class	Screen(tk.Canvas):
				""Customised	Canvas	that	can	move	a	circle	and	draw	a	path."""
				SIZE	=	230			#	The	size	of	the	screen.
				RADIUS	=	5			#	The	radius	of	the	circle

				def	__init__(self,	parent):
								"""Create	and	initialise	a	screen.

								Parameters:
												parent	(Tk):	Window	in	which	this	screen	is	to	be	placed.
								"""
								super().__init__(parent,	bg="light	blue",	width=self.SIZE,
																									height=self.SIZE)

								#	Start	in	the	centre,	without	any	points	in	the	path.
								self._x,	self._y	=	(self.SIZE	/	2,	self.SIZE	/	2)
								self._path	=	[(self._x,	self._y)]

								self._circle_select	=	False			#	Is	the	circle	selected.
								self.bind("<Button-1>",	self._click_event)
								self.bind("<B1-Motion>",	self._move_event)

								self._redraw()

				def	_redraw(self):
								"""Redraw	the	game	screen	after	a	move."""
								self.delete(tk.ALL)
								coords	=	(self._x	-	self.RADIUS,
																		self._y	-	self.RADIUS,

																		self._x	+	self.RADIUS,
																		self._y	+	self.RADIUS)
								self.create_oval(coords,	fill="black",	width=0)
								if	len(self._path)	>	1:
												self.create_line(self._path)

				def	_move(self,	dx,	dy):
								"""Move	the	circle	by	a	given	amount.	

								Parameters:
												dx	(int):	Amount	to	move	in	the	x-coordinate.
												dy	(int):	Amount	to	move	in	the	y-coordinate.
								"""
								self._x	+=	dx
								self._y	+=	dy
								self._path.append((self._x,	self._y))
								self._redraw()

				def	_click_event(self,	event):
								"""Sets	whether	the	circle	is	selected.
								
								Parameters:
												event	(tk.Event):	Selection	event	with	mouse	coordinates.								
								"""
								dist_to_circle	=	math.hypot(event.x	-	self._x,	event.y	-	self._y)
								self._circle_select	=	(dist_to_circle	<	self.RADIUS)

				def	_move_event(self,	event):
								"""Calculates	the	distance	to	move	the	circle	so	that	it	moves	
											With	the	mouse.
								
								Parameters:
												event	(tk.Event):	Drag	event	with	the	new	mouse	coordinates.
								"""
								if	self._circle_select:
												dx	=	event.x	-	self._x
												dy	=	event.y	-	self._y
												self._move(dx,	dy)

class	GameApp(object):
				"""Basic	game	to	move	a	circle	around	a	screen	with	the	mouse."""
				def	__init__(self,	master):
								"""Initialise	the	game	screen.

								Parameters:
												master	(Tk):	Main	window	for	application.
								"""
								screen	=	Screen(master)
								screen.pack(side=tk.LEFT,	expand=True,	fill=tk.BOTH)

root	=	tk.Tk()
app	=	GameApp(root)
root.mainloop()

We	have	removed	the	buttons	as	they	are	no	longer	needed,	we	will	now	have	full
control	over	the	circle	with	the	mouse.	The	first	big	change	to	notice	is	the	addition	of
three	new	lines	in	the	Screen.__init__	method.	The	first	line	is	simply	a	boolean	value
to	tell	if	the	circle	is	selected.	The	next	two	lines	are	calling	the	bind	method.	bind
takes	a	string	as	the	first	argument	for	what	type	of	event	we	are	interested	in.	The
second	argument	is	the	method	to	call	when	that	event	occurs.	The	two	events	we	are
interested	in	is	Button-1	(If	the	left	mouse	button	is	clicked)	and	B1-Motion	(If	the	mouse
is	moved	while	the	left	mouse	button	is	held	down).

Next,	we	have	removed	the	four	move	methods	of	Screen	and	replaced	them	with	two
new	methods.	These	methods	are	the	methods	called	by	our	two	bound	events.	Notice
how	each	takes	an	argument	event.	This	argument	is	the	event.	It	is	a	class	of	Python
and	contains	information	about	the	event	that	occurred.	We	can	use	event	to	access
the	x,	y	location	of	the	mouse	when	the	event	occurred	by	accessing	the	class
variable.	The	_click_event	method	sets	self._circle_select	to	a	boolean	value
representing	whether	or	not	the	mouse	is	inside	the	circle.	The	_move_event	method
calculates	the	distance	between	where	the	circle	is	and	where	the	mouse	is	so	that	we
can	move	the	circle	to	the	mouse’s	location.

We	can	now	save	our	code	as	game.py	and	have	a	look	at	our	new	game.

We	can	now	move	the	circle	any	way	that	we	wish	at	any	time	just	by	simply	moving
the	mouse.

More	About	Events

Here	is	a	table	of	some	of	the	events	that	can	be	used.	(Sourced	from
http://www.python-course.eu/tkinter_events_binds.php)

Events Description

<Button-1>

A	mouse	button	is	pressed	over	the	widget.	Button	1	is	the	leftmost
button,	button	2	is	the	middle	button	(where	available),	and	button
3	the	rightmost	button.	When	a	mouse	button	is	pressed	down	over
a	widget,	Tkinter	will	automatically	“grab”	the	mouse	pointer,	and
mouse	events	will	then	be	sent	to	the	current	widget	as	long	as	the
mouse	button	is	held	down.	The	current	position	of	the	mouse
pointer	(relative	to	the	widget)	is	provided	in	the	x	and	y	members
of	the	event	object	passed	to	the	callback.

<B1-Motion>

The	mouse	is	moved,	with	mouse	button	1	being	held	down	(use	B2
for	the	middle	button,	B3	for	the	right	button).	The	current	position
of	the	mouse	pointer	is	provided	in	the	x	and	y	members	of	the
event	object	passed	to	the	callback.

<Return>

The	user	pressed	the	Enter	key.	Virtually	all	keys	on	the	keyboard
can	be	bound	to.	For	an	ordinary	102-key	PC-style	keyboard,	the
special	keys	are	Cancel	(the	Break	key),	BackSpace,	Tab,
Return(the	Enter	key),	Shift_L	(any	Shift	key),	Control_L	(any
Control	key),	Alt_L	(any	Alt	key),	Pause,	Caps_Lock,	Escape,
Prior	(Page	Up),	Next	(Page	Down),	End,	Home,	Left,	Up,	Right,
Down,	Print,	Insert,	Delete,	F1,	F2,	F3,	F4,	F5,	F6,	F7,	F8,	F9,
F10,	F11,	F12,	Num_Lock,	and	Scroll_Lock.

<Key>
The	user	pressed	any	key.	The	key	is	provided	in	the	char	member	of
the	event	object	passed	to	the	callback	(this	is	an	empty	string	for
special	keys).

a
The	user	typed	an	“a”.	Most	printable	characters	can	be	used	as	is.
The	exceptions	are	space	(<space>)	and	less	than	(<less>).	Note	that	1
is	a	keyboard	binding,	while	<1>	is	a	button	binding.

<Configure>
The	widget	changed	size	(or	location,	on	some	platforms).	The	new
size	is	provided	in	the	width	and	height	attributes	of	the	event	object
passed	to	the	callback.

Some	of	the	attributes	of	the	event	class

|	Attribute	|	Description	|	|	——————	|	————————————————————
|	|	x,	y	|	The	current	mouse	position,	in	pixels.	|	|	x_root,	y_root	|	The	current

http://www.python-course.eu/tkinter_events_binds.php

mouse	position	relative	to	the	upper	left	corner	of	the	screen,	in	pixels.	|	|	char	|
The	character	code	(keyboard	events	only),	as	a	string.	|	|	width,	height	|	The
new	size	of	the	widget,	in	pixels	(Configure	events	only).	|	|	type	|	The	event
type.	|

More	tkInter
In	this	example,	we	will	create	a	simple	text	editor	application.	This	text	editor	will	be
able	to	open,	edit,	save	and	close	files.	We	will	also	keep	track	of	whether	the	text	file
has	been	edited	without	saving,	and	prompt	the	user	to	save	before	exiting.

We	will	introduce	a	new	widget,	Text,	to	represent	the	text	editing	area.	This	widget
has	three	methods	which	will	be	useful	in	this	application:	text.get(1.0,	tk.END)	will
retrieve	the	text	which	has	been	entered	into	the	widget,	text.delete(1.0,	tk.END)	will
remove	all	the	text	from	the	widget,	and	text.insert(tk.END,	string)	will	insert	a	string
of	text	into	the	widget.	There	are	many	other	types	of	widgets	not	described	here,	to
represent	other	GUI	elements,	such	as	lists	of	elements,	scroll	bars,	check	boxes,	and
radio	buttons.	Each	has	its	own	set	of	methods	which	are	useful	in	manipulating	the
information	that	type	of	widget	stores.

To	open	and	save	files,	we	will	use	the	tkInter	filedialog	module.	This	module	is
imported	using	the	other	type	of	import	that	is	performed	as	follows:	from	module	import	
submodule_or_class	This	comes	with	two	methods,	askopenfilename	for	choosing	a	file	to
open,	and	asksaveasfilename	for	choosing	a	file	to	save	to.	These	functions	will	open	a
dialog	box	prompting	the	user	to	choose	a	file,	and	then	return	the	file	name.	The
appearance	of	the	dialog	boxes	is	determined	by	the	operating	system	(that	is,	it	is	a
native	dialog	box),	so	the	user	will	already	be	familiar	with	using	the	dialog	without
requiring	effort	from	the	programmer.

We	will	also	need	to	display	short	dialog	message	boxes.	When	the	user	tries	to
abandon	a	file	without	saving	changes,	we	will	prompt	them	to	save.	We	will	add	this
functionality	to	an	“Exit”	menu	item,	as	well	as	when	the	user	closes	the	window
using	the	“X”	button	on	the	top	of	the	window.	We	will	also	create	a	simple	“About”
dialog	box,	giving	information	about	the	text	editor	when	the	user	asks	for	it.	These
dialog	boxes	will	be	modal;	this	means	that	the	user	will	not	be	able	to	continue
using	the	application	until	they	respond	to	the	dialog.	We	will	use	tkInter’s	messagebox
module.	This	comes	with	several	functions	for	showing	different	types	of	dialog	such
as	errors,	warnings,	“Yes/No”	or	“Retry/Cancel”	questions.	They	can	be	customised	to
show	different	titles,	messages,	icons	and	buttons,	and	will	return	a	value	based	on
the	user’s	button	choice.

We	will	also	introduce	the	Menu	widget,	for	adding	the	native	menus	on	the	top	of	the
window.	To	make	a	set	of	menus,	we	create	a	Menu	object	to	represent	the	menu	bar.
We	then	add	more	Menu	objects	to	represent	each	of	the	drop-down	menus.	To	add
individual	menu	items,	we	give	them	a	label	and	assign	a	callback	command,	just	as	we
create	callbacks	for	buttons.

We	will	now	write	the	text	editor	application.	As	well	as	constructing	the	GUI,	we	will
need	to	store	the	filename	of	the	document	being	edited.	We	will	also	store	a	boolean
flag	indicating	whether	or	not	the	file	has	been	edited	without	saving.	When	we
attempt	to	close	the	file	or	open	a	new	one,	we	will	check	to	see	if	the	user	wishes	to
save	their	work.

import	tkinter	as	tk
from	tkinter	import	filedialog
from	tkinter	import	messagebox

class	TextEditor(object)	:
				"""Simple	text	editing	application."""

				def	__init__(self,	master)	:
								"""	Create	the	screen	for	the	text	editor

								Parameters:
												master	(Tk):	Window	in	which	this	application	is	to	be	displayed.									
								"""
								self._master	=	master
								master.title("Text	Editor")

								self._filename	=	''
								self._is_edited	=	False

								self._text	=	tk.Text(master)
								self._text.pack(side=tk.TOP,	expand=True,	fill=tk.BOTH)
								self._text.bind("<Key>",	self._set_edited)

								#	Create	the	menu.
								menubar	=	tk.Menu(master)
								master.config(menu=menubar)

								filemenu	=	tk.Menu(menubar)
								menubar.add_cascade(label="File",	menu=filemenu)
								filemenu.add_command(label="New",	command=self.new)
								filemenu.add_command(label="Open",	command=self.open_file)
								filemenu.add_command(label="Save",	command=self.save)
								filemenu.add_command(label="Save	As...",	command=self.save_as)
								filemenu.add_command(label="Exit",	command=self.close)

								helpmenu	=	tk.Menu(menubar)
								menubar.add_cascade(label="Help",	menu=helpmenu)
								helpmenu.add_command(label="About",	command=self.about)

								master.protocol("WM_DELETE_WINDOW",	self.close)

				def	new(self)	:
								"""Create	a	new	text	file."""
								if	self._can_close()	:
												#	Forget	about	the	currently	open	file.
												self._text.delete(1.0,	tk.END)
												self._filename	=	''
												self._master.title("Text	Editor")
												self._is_edited	=	False

				def	open_file(self)	:
								"""Open	a	text	file."""
								if	not	self._can_close()	:
												return

								self._filename	=	filedialog.askopenfilename()
								if	self._filename	:
												f	=	open(self._filename,	"r")
												text	=	f.read()
												f.close()

												self._text.delete(1.0,	tk.END)
												self._text.insert(tk.END,	text)
												self._master.title("Text	Editor:	{0}".format(self._filename))
												self._is_edited	=	False

				def	save(self)	:
								"""	Save	the	contents	of	the	text	in	memory	to	the	file."""
								if	not	self._filename	:

												self._filename	=	filedialog.asksaveasfilename()
								self._perform_save()

				def	save_as(self)	:
								"""	Allow	saving	the	contents	of	the	text	in	memory	to	a	new	file."""
								filename	=	filedialog.asksaveasfilename()
								if	filename	:
												self._filename	=	filename
								self._perform_save()

				def	close(self)	:
								"""Exit	the	text	editor	application."""
								if	self._can_close()	:
												self._master.destroy()

				def	about(self)	:
								"""Generate	an	'About'	dialog."""
								messagebox.showinfo(title="Text	Editor",	message="A	simple	text	editor")

				def	_set_edited(self,	event)	:
								"""Record	that	the	text	file	has	been	edited.
								
								Parameters:
												event	(Tk.Event):	Record	that	text	has	been	edited	if	any	event
																														occurs	in	the	text.
								"""
								self._is_edited	=	True

				def	_perform_save(self)		:
								"""Store	the	contents	in	memory	into	a	file."""
								if	self._filename:
												self._master.title("Text	Editor:	{0}".format(self._filename))
												f	=	open(self._filename,	"w")
												text	=	self._text.get(1.0,	tk.END)[:-1]
												f.write(text)
												f.close()
												self._is_edited	=	False

				def	_can_close(self)	:
								"""	Ask	the	user	if	they	want	to	save	the	changed	text	to	a	file.			
								Returns:
												(bool)	True	if	it	is	safe	to	close	the	file;
																			False	if	the	user	wants	to	continue	editing.
								"""
								can_close	=	True
								if	self._is_edited	:
												reply	=	messagebox.askquestion(type=messagebox.YESNOCANCEL,
																								title="File	not	saved!",
																								message="Would	you	like	to	save	this	file?")
												if	reply	==	messagebox.YES	:
																self.save()			#	can_close	is	already	True.
												#	elif	reply	==	messagebox.NO	:
																#	can_close	is	already	True.
												elif	reply	==	messagebox.CANCEL	:
																can_close	=	False
								#	else	file	is	not	edited,	so	can	close.
								return	can_close

if	__name__	==	"__main__"	:
				root	=	tk.Tk()

				TextEditor(root)
				root.mainloop()

First,	we	will	look	at	the	__init__	method.	We	create	and	pack	a	Text,	and	bind	the	"
<Key>"	event	to	a	method	which	will	set	the	_is_edited	flag	to	True	whenever	a	key	is
pressed.	The	statement	menubar	=	tk.Menu(master)	will	create	a	menu	bar	for	the	master
window,	and	in	the	line	below,	we	configure	the	master	to	display	this	menu	bar.	To
create	menus,	tk.Menu(menubar)	will	create	an	empty	menu	list,	and	menubar.add_cascade
will	insert	it	onto	the	menu	bar	with	the	given	text	label.	To	add	a	menu	item,	we	use
the	method	add_command,	and	pass	in	a	text	label	to	display,	and	a	callback	function,	just
as	with	Button	objects.	If,	for	example,	we	wanted	to	create	a	sub-menu	to	the	“File”
menu,	we	would	create	tk.Menu(filemenu)	and	call	filemenu.add_cascade;	menu	items	and
further	sub-menus	can	then	be	added	into	this	menu.	The	statement	
master.protocol("WM_DELETE_WINDOW",	self.close)	is	similar	to	a	binding;	it	allows	us	to	set
an	action	to	perform	when	a	particular	event	occurs.	In	this	case,	"WM_DELETE_WINDOW"	is
the	event	represented	by	closing	the	window	(using	the	“X”	icon),	and	we	set	the	
self.close	method	as	a	callback.	Note	that	the	same	callback	is	also	assigned	to	the
“File	->	Exit”	menu	item,	so	either	of	these	actions	will	do	the	same	thing.

In	the	new,	open	and	close	methods,	we	need	to	check	if	the	user	has	edited	the	file	and
wishes	to	save.	To	do	this,	we	use	the	_can_close	helper	method	to	ask	this	question,
save	if	necessary,	and	return	False	if	the	user	wishes	to	continue	editing	the	file.	Since
the	save	and	save_as	functionality	is	similar	(they	both	save	the	text	to	a	file),	we
abstract	this	to	the	_perform_save	method.

This	program	is	available	to	download	as	text_editor.py.	When	we	run	the	application,
we	now	see	this:

I	warn	this	programme	that	any	recurrence	of	this	sloppy	long-haired
civilian	plagiarism

will	be	dealt	with	most	severely

Recursion
Here	is	a	famous	example	of	visual	recursion	often	called	the	Droste	effect.	Droste	is
a	Dutch	chocolate	maker.	Notice	that	the	box	has	a	picture	of	the	box	on	it,	which
itself	has	a	picture	of	the	box	on	it.	If	the	picture	were	detailed	enough,	this	would
continue	endlessly.

Another	Problem	Solving	Strategy
In	this	section,	we	will	look	into	another	way	of	solving	problems.	To	do	this,	we	will
start	with	a	very	simple	example.

Suppose	we	have	the	problem	of	summing	a	list	of	numbers	(without	using	the
existing	sum	function).	This	is	an	easy	task,	but	we’ll	take	a	different	approach	to
solving	it	than	we’ve	seen	before.	To	be	explicit,	we	need	to	write	the	body	for	this
function	definition:

def	add(numbers)	:
				"""Add	up	a	list	of	numbers.

				
				Parameters:
								numbers	(list):	List	of	numbers	to	be	summed.

				Return:
								float:	Sum	of	all	the	values	in	'numbers'.
				"""
				pass	#	Something	else	goes	here.

The	pass	keyword	is	a	statement	that	does	nothing	when	it	is	executed;	it	is	known	as
a	“no	operation”	statement,	usually	abbreviated	to	NOP	or	NOOP	(pronounced	“no-
op”).	It	is	useful	as	a	placeholder	when	a	block	of	code	is	needed	but	has	not	been
written	yet.	When	we	write	the	function	body,	we	will	remove	the	pass	statement.

Here	is	the	plan:	To	add	up	a	list	of	numbers,	we	will	take	the	first	number,	and	add
on	the	sum	of	the	remaining	(all	but	the	first)	numbers.	Check	that	this	process	will
give	the	correct	sum.	Here	is	an	expression	which	should	get	the	first	number	of	a	list
and	add	together	the	remaining	numbers:

numbers[0]	+	add(numbers[1:])

Notice	what	is	happening	here:	that	we	are	solving	the	problem	of	adding	up	a	list	of
numbers	by	adding	up	a	smaller	list	of	numbers.	To	add	up	this	smaller	list	of
numbers,	we	can	apply	this	process	again,	and	add	up	an	even	smaller	list	of
numbers,	and	so	on.	A	function	that	computes	a	result	by	calling	the	same	function	is
called	a	recursive	function.	Recursion	is	the	method	of	problem	solving	by	using
recursive	functions.

But	there	is	a	slight	problem	here:	we	are	not	really	ever	adding	up	the	numbers,	we
are	just	constantly	changing	the	problem	to	a	smaller	list	of	numbers.	We	need	to
decide	on	a	point	where	it	is	more	sensible	to	just	return	a	result	instead	of	trying	to
go	further.	That	point	comes	when	we	have	reached	the	smallest	list	possible,	which
is	the	empty	list.	If	the	list	is	empty,	then	the	result	of	the	sum	should	be	0	(when
there	are	no	numbers	to	add	up,	the	total	is	zero).

Summarising,	our	strategy	is	now	in	two	separate	cases:	if	the	list	is	empty,	then	the
result	is	0.	Otherwise,	the	result	is	numbers[0]	+	add(numbers[1:]).	This	makes	it	very
easy	to	write	the	function:

def	add(numbers)	:
				"""Add	up	a	list	of	numbers.
				
				Parameters:
								numbers	(list):	List	of	numbers	to	be	summed.

				Return:
								float:	Sum	of	all	the	values	in	'numbers'.
				"""
				if	not	numbers	:
								return	0
				else	:
								return	numbers[0]	+	add(numbers[1:])

We	have	seen	plenty	of	examples	of	functions	or	methods	whose	definitions	contain
occurrences	of	other	functions	or	methods.	The	above	example	shows	that	there	is

nothing	to	stop	us	defining	a	function	that	contains	an	occurrence	of	itself.	Does	this	
add	function	work?	Download	add.py	to	test	it.

>>>	add([3,	8,	5])
16

Aside:	Be	Efficient

Notice	that	each	recursive	step	of	our	add	function	performs	a	list	slice	
numbers[1:],	which	essentially	makes	a	copy	of	the	whole	list.	Doing	this	at	every
step	makes	the	recursive	function	inefficient.	In	the	next	section,	we	will	return
to	the	question	of	efficiency.	A	more	efficient	way	to	add	a	list	of	numbers
would	be	to	use	a	loop,	or	the	built-in	sum	function.

Using	Recursion
What	is	involved	in	designing	a	recursive	function?	One	is	the	recursive	step	case,
which	typically	involves	solving	the	problem	by	calling	the	same	function	with	a
slightly	smaller	input.	Examples	of	“smaller	input”	are	a	list	or	string	with	the	first
element	removed,	or	a	number	minus	one.	The	other	is	the	base	case	or	termination
case,	which	is	typically	on	the	smallest	possible	input,	where	solving	the	problem	is
typically	a	trivial	task.	For	example,	the	input	for	a	base	case	might	be	an	empty	list
or	string,	or	the	number	0	(or	another	small	number).

In	the	case	of	the	add	example,	the	recursive	step	is	to	say	that	the	sum	of	the	list	
numbers	is	given	by	numbers[0]	+	add(numbers[1:]),	where	numbers[1:]	is	our	slightly
smaller	sub-problem.	The	base	case	is	found	when	the	list	is	empty,	in	this	case	the
result	is	0.	It	is	useful	to	ensure	that	the	base	case	deals	with	any	situation	that	does
not	apply	to	the	recursive	step.	In	the	add	function,	the	expression	numbers[0]	+	
add(numbers[1:])	doesn’t	work	when	the	list	is	empty	(since	“numbers[0]”	will	raise	an	
IndexError),	so	this	must	be	handled	by	the	base	case.

It	may	be	useful	to	explicitly	study	how	the	recursive	add	function	computes	a	result.
See	the	visualisation	of	the	add	function	on	BlackBoard.

When	writing	a	recursive	function,	it	is	often	helpful	to	apply	wishful	thinking.	In	this
process,	we	assume	that	we	can	solve	the	problem	with	smaller	inputs	and	think
about	how	that	could	be	used.	That	is,	if	we	knew	the	solution	to	a	smaller	problem,
how	could	we	find	the	solution	to	our	problem?	Once	that	is	answered,	how	does	that
recursive	step	eventually	reach	a	“simplest	case,”	and	how	do	we	handle	that	case?

Recursive	Definitions
In	computer	science	and	mathematics,	recursive	definitions	are	definitions	that
refer	to	themselves.	For	example,	one	definition	of	the	factorial	function	n!	is:

A	recursive	definition	is	very	easy	to	translate	directly	into	Python	code.	The	above
definition	of	the	factorial	function	can	be	represented	in	Python	as:

def	factorial(n)	:
				"""Calculate	the	factorial	of	the	given	number	'n'.
					
				Parameters:
								n	(int):	Number	for	which	the	factorial	is	to	be	calculated.

				Return:
								int:	Factorial	of	'n'.
				"""
					if	n	==	0	:
								return	1
				else	:
								return	factorial(n-1)	*	n

Do	we	really	need	recursion?	Can’t	we	just	write	a	while	loop	to	do	the	work?	How
about	the	following	definition?

def	factorial2(n)	:
				"""Calculate	the	factorial	of	the	given	number	'n'.
					
				Parameters:
								n	(int):	Number	for	which	the	factorial	is	to	be	calculated.

				Return:
								int:	Factorial	of	'n'.
				"""
				factorial	=	1
				while	n	!=	0	:
								factorial	*=	n
								n	-=	1
				return	factorial

This	certainly	works	—	not	exactly.	Both	versions	have	a	problem	if	we	supply	them
with	a	negative	integer	or	a	float.	They	will	both	go	into	‘infinite	loops’	as	subtracting
1	will	never	reach	the	terminating	condition	n	==	0.	We	really	need	to	constrain	n	to	be
a	non-negative	integer.

It	is	clear	that	the	recursive	Python	definition	is	an	obviously	correct	implementation
of	the	mathematical	definition	but	it	is	not	so	clear	that	the	non-recursive	definition	is
a	correct	implementation.	This	is	to	be	expected	though	—	a	recursive	mathematical
definition	should	have	a	more	direct	translation	into	a	recursive	program	than	a	non-
recursive	one.

Still,	recursion	is	not	really	needed	here	—	we	can	work	a	bit	harder	and	avoid
recursion.	Is	this	always	the	case?	No	—	it	turns	out	that	there	a	certain	kinds	of
problems	that	are	just	“inherently	recursive”.

A	Counting	Problem
As	an	example,	we	will	write	a	recursive	function	to	solve	the	following	counting
problem.

Consider	the	grid	below,	each	corner	is	at	integer	coordinates.	We	start	at	the	top-
left,	(0,0),	and	we	are	allowed	to	move	down	and	right	along	the	lines	in	the	grid	to
reach	the	coordinates	(x,y).	The	task	to	solve	is,	how	many	different	paths	can	we
take	to	reach	the	point	(x,y)?	For	example,	two	possible	paths	from	(0,0)	to	(3,4)	are
shown	below.

We	will	write	a	function	num_paths(x,	y)	to	solve	this	problem.	To	solve	a	problem	like
this	it	can	help	to	start	with	a	pen	and	paper	and	try	a	few	examples	to	get	a	handle
on	the	problem.	We	can	try	this	and	use	wishful	thinking:	if	we	knew	the	number	of
paths	to	other	points	on	the	grid,	could	we	easily	find	the	number	of	paths	to	the	one
we’re	interested	in?

We	quickly	notice	that	every	path	to	(x,y)	must	finish	by	going	through	either	of	the
points	next	to	it:	(x-1,y)	or	(x,y-1).	How	does	this	help?	We	can	see	from	this	that	the
number	of	paths	to	(x,y)	is	the	sum	of	the	number	of	paths	to	each	of	these	adjacent
points:	num_paths(x-1,	y)	+	num_paths(x,	y-1).	Here	we	have	the	recursive	step.

In	finding	the	base	case,	we	need	to	consider,	what	case	does	every	recursive	step
eventually	lead	to?	In	this	problem,	the	recursive	step	moves	backwards	along	the
grid,	both	left	and	up.	This	will	eventually	reach	either	the	left	or	top	edge	(that	is,
when	x	==	0	or	y	==	0).	So	now	we	consider,	how	many	paths	are	there	to	a	point	on
the	top	or	left	edges?

In	fact,	there	is	only	one	path,	which	goes	either	straight	down	or	straight	to	the
right.	So,	if	x	==	0	or	y	==	0,	the	result	is	1.

These	observations	lead	to	the	following	definition.

def	num_paths(x,	y)	:
				"""Calculate	the	number	of	paths	to	point	(x,y)
					
				Parameters:
								x	(int):	x	coordinate	of	the	point.
								y	(int):	y	coordinate	of	the	point.

				Return:
								int:	Number	of	paths	from	(0,0)	to	(x,y).
				"""

					if	x	==	0	or	y	==	0	:
								return	1
				else	:
								return	num_paths(x,	y-1)	+	num_paths(x-1,	y)

This	turns	out	to	be	a	simple,	elegant	solution.	We	argue	that,	without	knowing	the
mathematical	function	for	the	number	of	paths,	it	is	extremely	difficult	to	write	a	non-
recursive	program	to	solve	the	problem.

Recursive	ADTs
Now	we	will	look	at	a	slightly	different	topic.	We	will	start	with	a	new	ADT,	the
binary	search	tree	(actually,	a	simplified	version	of	it).	A	binary	search	tree	is	a	way
of	storing	a	collection	of	values	in	order,	which	is	useful	in	many	applications	where
lots	of	data	needs	to	be	efficiently	stored	and	accessed.	A	binary	search	tree	is	made
of	multiple	nodes,	each	node	contains	these	things:

A	value,	which	is	the	piece	of	information	being	stored.	It	can	be	any	type	of	data
that	allows	==,	<	and	>	comparisons.
An	optional	“left	child”,	which	is	another	node.	All	the	nodes	to	the	left	of	this
one	(called	the	left	subtree)	must	have	values	that	are	less	than	the	value	of	this
node.
An	optional	“right	child”,	which	is	another	node.	All	the	nodes	to	the	right	of	this
one	(the	right	subtree)	must	have	values	that	are	greater	than	or	equal	to	the

value	of	this	node.	To	visualise	this	definition,	the	diagram	below	shows	a
common	way	to	represent	a	tree.	Each	node	is	a	circle	with	the	value	inside.	The
top-most	node	(in	this	case,	the	one	with	value	5)	is	called	the	root,	which	can	be
used	to	access	the	entire	tree.	Nodes	without	any	children	(in	this	case,	2,	4,	6,
and	8)	are	called	leaves.

Take	a	moment	to	understand	how	this	diagram	relates	to	the	definition	above.	For
example,	3	and	7	are	the	left	and	right	children	of	5.	The	nodes	with	2,	3	and	4	make
up	the	left	subtree	of	5.	We	should	also	check	that	each	node	satisfies	the	“less	than”
and	“greater	than”	properties	described.	5	is	greater	than	2,3,4	and	less	than	6,7,8.	3
is	greater	than	2	and	less	than	4.	7	is	greater	than	6	and	less	than	8.

There	is	an	important	idea	that	has	been	introduced	in	this	ADT:	nodes	store	other
nodes.	This	is	an	example	of	a	recursive	ADT,	a	data	type	which	stores	other
instances	of	itself.	These	nodes	can	themselves	store	other	nodes,	and	so	on.	They	are
analogous	to	a	recursive	step	in	a	recursive	function.	Leaf	nodes	are	analogous	to	a
base	case	in	a	recursive	function,	because	they	are	the	simplest	type	of	node,	and	also
where	the	path	of	“travelling	along”	nodes	stops.	One	other	interesting	property	of
the	binary	search	tree	is	that	each	subtree	is	itself	a	tree:	for	example,	the	nodes	2,	3
and	4	form	a	tree	by	themselves.

Nodes	in	a	binary	search	tree	can	support	the	following	operations:

Node.insert(value)	—	insert	a	new	value	into	one	of	the	subtrees	of	this	node,
preserving	the	tree	ordering	property.
Node.to_list()	—	return	a	sorted	list	of	values	of	this	node	and	its	subtrees.
value	in	node	—	a	boolean	test	that	checks	if	this	value	is	stored	in	this	node	or	its
subtrees.

All	of	these	are	easiest	to	implement	recursively,	which	is	helped	by	the	recursive
nature	of	the	tree	structure.	Let’s	start	writing	a	Node	class	to	represent	nodes.	When
a	node	is	created,	it	has	no	children	yet,	so	we	will	use	None	to	represent	indicate	that
there	are	no	left	or	right	sub-trees.

class	Node(object)	:
				"""A	node	in	a	binary	search	tree."""

				def	__init__(self,	value)	:
								"""A	new	Node	in	a	Binary	Search	Tree
					
								Parameters:
												value:	Element	to	be	stored	in	this	Node.	
																			Must	be	comparable	by	==,	>	and	<.
								"""
								self._value	=	value
								self._left	=	None
								self._right	=	None

For	the	insert	method,	the	value	should	be	added	as	a	new	node	in	either	the	left	or
right	subtree,	whichever	is	appropriate.	Note	that	the	method	does	this	by	making
recursive	calls	to	insert	on	other	nodes.	The	“base	case”	is	when	the	left	or	right	child
does	not	exist,	so	a	new	Node	is	created.	Note	also	that	if	the	value	being	inserted	is
equal	to	the	value,	it	will	go	in	the	right	subtree,	but	there	is	no	reason	it	cannot	go	in
the	left	subtree	instead.

				def	insert(self,	value)	:

								"""Add	'value'	into	this	Node	in	the	search	tree.
					
								Parameters:
												value:	Element	to	be	stored	in	this	Node.	
																			Must	be	comparable	by	==,	>	and	<.
								"""
								if	value	<	self._value	:
												if	self._left	is	None	:
																self._left	=	Node(value)
												else	:
																self._left.insert(value)
								else	:
												if	self._right	is	None	:
																self._right	=	Node(value)
												else	:
																self._right.insert(value)

To	write	the	to_list	method,	we	can	use	this	rationale:	all	the	nodes	in	the	left	subtree
will	be	less	than	the	current	node,	so	recursively	calling	self._left.to_list()	will	give
us	the	first	portion	of	the	list	in	sorted	order.	We	can	then	append	the	current	value.
Similarly,	a	call	to	self._right.to_list()	will	give	us	the	last	portion	of	the	list	in	sorted
order,	which	can	be	extended	onto	the	end.	Notice	that	the	base	case	is	not	explicitly
written,	but	it	is	still	there:	if	both	of	the	children	are	None,	then	no	recursive	calls	will
be	made.

				def	to_list(self)	:
								"""Return	a	sorted	list	of	the	values	of	this	Node's	children."""
								result	=	[]
								if	self._left	is	not	None	:
												result.extend(self._left.to_list())
								result.append(self._value)
								if	self._right	is	not	None	:
												result.extend(self._right.to_list())
								return	result

To	use	the	value	in	node	syntax,	a	class	must	implement	the	__contains__	method	and
return	True	or	False.	We	will	determine	if	the	value	we	are	searching	for	is	greater	or
less	than	the	current	node’s	value,	then	we	will	search	for	the	value	in	either	the	right
or	left	subtree.	Notice	below	that	value	in	self._left	and	value	in	self._right	are
actually	recursive	steps,	because	they	both	use	the	same	__contains__	method	on	a
subtree.	If	the	value	is	the	one	that	we	are	searching	for,	we	can	return	True,
otherwise,	there	is	no	other	way	to	find	the	value	and	we	return	False,	these	are	both
base	cases.

				def	__contains__(self,	value)	:
								if	value	==	self._value	:
												return	True
								elif	value	<	self._value	and	self._left	is	not	None	:
												return	value	in	self._left
								elif	value	>	self._value	and	self._right	is	not	None	:
												return	value	in	self._right
								else	:
												return	False

Lastly,	we	can	implement	a	__str__	method:

				def	__str__(self)	:
								return	"({0},	{1},	{2})".format(self._left,	self._value,	self._right)

How	does	this	work?	When	performing	the	.format	on	each	child,	if	the	child	is	None,
then	"None"	will	appear	in	the	string	result.	If	the	child	is	a	Node,	then	.format	method
will	recursively	call	str	on	that	node.	This	is	an	example	of	the	potential	for	writing
very	elegant	recursive	functions.

It	is	sometimes	much	easier	to	write	a	function	recursively	than	iteratively,	and	being
able	to	work	with	recursive	methods	is	an	important	skill.

For	completeness,	we	will	also	give	an	implementation	of	a	binary	search	tree	class,
which	simply	keeps	track	of	the	root	node	(if	there	is	one	—	the	tree	might	not	have
any	nodes)	and	refers	to	the	root	node	when	its	methods	are	called.	The	two	classes
can	be	downloaded:	search_tree.py

class	BinarySearchTree(object)	:
				"""A	binary	search	tree."""

				def	__init__(self)	:
								"""A	new	empty	binary	search	tree."""
								self._root	=	None

				def	insert(self,	value)	:
								"""Add	'value'	into	the	tree.
								
								Preconditions:
												'value'	is	comparable	by	at	least	the	==,	>	and	<	operators.
								"""
								if	self._root	is	None	:
												self._root	=	Node(value)
								else	:
												self._root.insert(value)

				def	to_list(self)	:
								"""Return	a	sorted	list	of	the	values	in	this	tree."""
								if	self._root	is	None	:
												return	[]
								return	self._root.to_list()

				def	__contains__(self,	value)	:
								return	self._root	is	not	None	and	value	in	self._root

				def	__str__(self)	:
								if	self._root	is	None	:
												return	"()"
								return	str(self._root)

Here	are	some	examples	of	using	this	tree.	The	interaction	below	creates	a	tree	with
the	same	structure	as	the	diagram	above,	the	second	is	a	simple	function	that	sorts	a
list	of	numbers	that	takes	advantage	of	to_list.	Study	the	output	of	print(tree)	and
relate	it	to	both	the	diagram	and	the	Node.__str__	method	above.

>>>	tree	=	BinarySearchTree()
>>>	for	v	in	[5,	3,	2,	4,	7,	6,	8]:
								tree.insert(v)

>>>	print(tree)

(((None,	2,	None),	3,	(None,	4,	None)),	5,	((None,	6,	None),	7,	(None,	8,	None)))
>>>	tree.to_list()
[2,	3,	4,	5,	6,	7,	8]
>>>	4	in	tree
True
>>>	7.5	in	tree
False

>>>	def	tree_sort(lst)	:
								"""A	sort	implementation	using	a	tree.
								
								Parameters:
												lst:	List	of	elements	to	be	sorted.

								Return:
												Sorted	list	of	elements.

								Preconditions:
												All	elements	of	'lst'	are	comparable	by	
												at	least	the	==,	>,	and	<	operators.
								"""
								tree	=	BinarySearchTree()
								for	element	in	lst	:
												tree.insert(element)
								return	tree.to_list()

Aside:	An	advanced	implementation

Some	students	may	wish	to	challenge	themselves	and	experiment	with	another
implementation	of	a	binary	search	tree.	search_tree2.py	contains	a	more	elegant
implementation,	as	well	as	support	for	the	len	function	and	for-loops	(using
content	from	the	optional	material	on	functional	programming.

Aside:	Is	recursion	necessary?

The	problems	we	have	looked	at	in	this	section	were	solved	by	writing	recursive
functions,	but	did	we	need	to	use	recursion?	When	can	a	recursive	function	be
written	iteratively	(using	a	loop)	instead?

A	function	is	tail	recursive	if	the	recursive	call	is	the	last	thing	that	happens
before	the	function	returns.	Tail	recursive	functions	can	be	directly	translated
into	an	iterative	function.	In	fact,	some	other	programming	languages	will
notice	when	tail	recursion	is	used	and	optimise	it	so	it	behaves	iteratively.

For	example,	the	Node.insert	method	is	tail	recursive,	because	when	the	insert
method	is	called	recursively,	that	is	the	last	step	the	function	takes.	The	insert
method	can	be	defined	iteratively	as	below.

<div	class="language-python	highlighter-rouge"><div	class="highlight"><pre	
class="highlight"><code>				def	<span	
class="nf">insert(self
,	value)	
:
				"""Add	a	value	into	this	node	in	the	search	tree."""

				node	=	<span	
class="bp">self
				while	True	<span	
class="p">:
								if	value	<span	
class="o"><	node.
_value	:
												if	node<span	
class="o">._left	is	
None	:
																node.<span	
class="n">_left	=	Node
(value)
																break
												else	:
																node	=	<span	
class="n">node._left
								else	:
												if	node<span	
class="o">._right	is	
None	:
																node.<span	
class="n">_right	=	Node
(value)
																break
												else	:
																node	=	<span	
class="n">node._right	
</code></pre></div>				</div>

However,	with	a	good	understanding	of	recursion,	many	people	would	prefer
the	original	recursive	method.

The	__contains__	method	is	also	tail	recursive,	and	can	similarly	be	defined	using
a	while	loop.	However,	to_list	and	__str__	are	not	tail	recursive,	because	after	a
recursive	call	is	made,	there	is	still	more	work	to	be	done	before	returning	the
result.	These	two	methods	are	very	difficult	to	write	without	using	recursion.
The	num_paths	function	above	is	also	not	tail	recursive,	and	cannot	easily	be
translated	into	an	iterative	function.

Note	however	that	there	are	functions,	such	as	add	and	factorial	from	earlier,
which	are	not	tail	recursive	but	can	be	rewritten	iteratively	using	a	bit	more
thought.

And	now	for	something	completely	different.

–	John	Cleese

Functional	Programming,	List
Comprehension,	Iterators,	Generators
Functional	Programming
Functional	Programming	is	a	programming	paradigm	in	which	problems	are
decomposed	into	collections	of	functions	(in	the	mathematical	sense)	and	computation
is	expression	evaluation.	Functional	Programming	languages	are	examples	of
declarative	languages	in	which	the	programmer	writes	a	specification	of	the	problem

to	be	solved	and	the	declarative	language	implementation	determines	how	to	solve
the	problem	given	the	specification.	In	functional	languages	the	specification	is	a
collection	of	definitions	of	mathematical	functions	and	the	problem	to	be	solved	is
expressed	as	a	mathematical	expression	to	be	evaluated	based	on	the	given	function
definitions.

In	pure	functional	programming	there	is	no	state	(program	variables)	that	can	be
modified.	A	consequence	of	this	is	that	it	is	much	easier	to	reason	about	the
correctness	of	programs	written	in	that	style	than	in	procedural	languages	where
state	changes.	An	example	of	a	popular	(pure)	functional	programming	language	is
Haskell.

Python	is	not	a	functional	programming	language	but	it	does	borrow	some	ideas	from
functional	languages	such	as	anonymous	functions,	higher-order	programming,	list
comprehension	and	lazy	evaluation	that,	for	example,	provide	powerful	list	processing
techniques.	We	will	look	at	examples	shortly.

Iterators
We	are	familiar	with	the	concept	of	for-loops	by	now.	They	take	a	collection	of	data
and	look	at	it	one	piece	at	a	time	from	start	to	end.	An	object	that	can	be	iterated	over
is	called	an	iterable.	For	example,	strings,	tuples,	lists,	and	dictionaries	are	all
iterables.	But	how	do	they	work?	How	can	we	write	our	own	iterables?	How	can	we
take	advantage	of	iterables	to	do	more	powerful	things?

All	iterables	can	create	a	‘stream	of	data’	that	can	be	accessed	one	element	at	a	time,
called	an	iterator.	Python	uses	the	iterator	to	perform	for-loops.	Iterators	are	made
using	the	iter	function,	and	the	“one	element	at	a	time”	access	is	done	using	the	next
function.	next	will	return	the	next	piece	of	data.	If	there	is	no	more	data,	then	a	
StopIteration	exception	will	be	raised.	Here	is	an	example	using	a	string.	In	this	case,	
x	is	an	iterable,	and	it	is	an	iterator.

>>>	s	=	'spam'
>>>	it	=	iter(s)
>>>	next(it)
's'
>>>	next(it)
'p'
>>>	next(it)
'a'
>>>	next(it)
'm'
>>>	next(it)
Traceback	(most	recent	call	last):
		File	"<pyshell#6>",	line	1,	in	<module>
				next(it)
StopIteration

Since	iterators	are	only	accessed	one	element	at	a	time,	there	are	a	few	advantages.
If	possible,	iterators	can	be	written	to	calculate	the	data	‘on	the	fly’	when	requested,
instead	of	calculating	and	storing	all	the	data	at	once.	This	idea	is	called	lazy
evaluation.	In	fact,	this	approach	can	be	used	to	generate	an	infinite	stream	of	data.
As	long	as	we	do	not	want	to	get	all	the	elements	(which	would	lead	to	infinite
computation)	this	idea	can	lead	to	elegant	solutions	to	problems	that	can	be	difficult
to	express	with	finite	structures.

Where	can	lazy	evaluation	be	useful?	The	range	and	enumerate	functions	are	example	of
this.	Recall	that	range	and	enumerate	return	a	special	class	that	is	a	sequence	of
numbers	and	objects.	The	reason	for	this	is	that	these	two	functions	are	mainly	used

https://www.haskell.org/

in	just	performing	a	for-loop	over	the	data.	Therefore,	they	are	iterator	types,	making
use	of	them	for	very	large	data	sets	avoids	using	up	too	much	of	the	computer’s
resources.

Iterables	and	Iterators

<div	class="language-python	highlighter-rouge"><div	class="highlight"><pre	
class="highlight"><code>iter(
iterable)	<span	
class="nb">iter(iterator
)	next(
iterator)	</code></pre></div>				
</div>

Semantics

An	iterable	is	an	object	which	can	be	iterated	over	(for	example,	used	in	for-
loops).	An	iterator	is	an	object	which	produces	a	stream	or	sequence	of	data
one	element	at	a	time.	iter(iterable)	will	create	a	new	iterator.	iter(iterator)
will	return	the	same	iterator.	next(iterator)	will	return	the	next	value	in	the
sequence.	If	the	sequence	has	finished,	this	function	will	raise	StopIteration.

How	do	we	write	an	iterable	class,	and	the	corresponding	iterator?	An	iterable	class
must	have	an	__iter__	method	to	support	the	iter	function.	The	method	should	return
an	iterator.	The	iterator	object	must	have	a	next	method	which	either	returns	the	next
value	or	raises	StopIteration.	The	iterator	must	also	have	an	__iter__	method	which
returns	the	iterator	itself;	this	is	so	that	the	iterator	itself	can	also	be	iterated	over.	To
demonstrate,	here	is	an	example	(geometric.py)	involving	a	geometric	sequence,	which
is	a	sequence	where	each	term	is	multiplied	by	a	fixed	ratio.

class	GeometricSequence(object)	:
				"""A	geometric	sequence	of	numbers.

				The	sequence	of	numbers:
				start,	start	*	ratio,	start	*	ratio**2,	...,	start	*	ratio**(length-1)
				Without	a	length	parameter,	the	sequence	is	infinite.
				"""

				def	__init__(self,	start,	ratio,	length=None)	:
								self._start	=	start
								self._ratio	=	ratio
								self._len	=	length

				def	__iter__(self):
								return	GeometricIterator(self._start,	self._ratio,	self._len)

class	GeometricIterator(object)	:
				"""An	iterator	on	a	geometric	sequence."""

				def	__init__(self,	start,	ratio,	length)	:
								#	Store	values	for	later
								self._ratio	=	ratio
								self._len	=	length
								#	Store	information	about	position	in	the	sequence

								self._pos	=	0
								self._value	=	start

				def	__iter__(self)	:
								return	self

				def	next(self)	:
								#	Check	if	the	sequence	has	finished
								if	self._len	is	not	None	and	self._pos	>=	self._len	:
												raise	StopIteration
								tmp	=	self._value
								#	Update	for	next	time.
								self._value	*=	self._ratio
								self._pos	+=	1
								return	tmp

>>>	powers_two	=	GeometricSequence(1,	2)
>>>	it	=	iter(powers_two)
>>>	next(it)
1
>>>	next(it)
2
>>>	next(it)
4
>>>	next(it)
8
>>>	for	x	in	powers_two	:
				print(x,	end="	")
				if	x	>	1000	:
								break

1	2	4	8	16	32	64	128	256	512	1024
>>>	seq	=	GeometricSequence(2,	3,	6)
>>>	for	x	in	seq	:
								print(x,	end="	")

2	6	18	54	162	486	
>>>	54	in	seq
True
>>>	20	in	seq
False
>>>	print('	'.join(GeometricSequence('*',	2,	4)))
*	**	****	********

Notice	that	the	for-loop	in	the	first	example	exits	with	a	break.	Since	the	sequence	is
infinite,	there	is	no	way	to	exit	the	loop	other	than	specifying	a	condition	we	are
interested	in	(which	depends	on	the	problem	we	are	solving).	The	second	sequence	is
defined	with	a	length	of	6,	so	after	enough	calls	to	next,	a	StopIteration	is	raised	and
the	for	loop	exits	naturally.	The	second	sequence	can	also	perform	in	tests.	Be	careful
of	performing	in	tests	on	infinite	sequences	like	powers_two,	because	it	will	never	stop
looking	through	the	sequence	if	the	value	is	not	there.	The	third	example	shows	a
geometric	sequence	of	strings	instead	of	numbers.

Generators
That	last	example	was	pretty	big	for	code	that	generates	a	simple	sequence,
especially	having	to	write	two	classes.	As	always,	Python	has	found	a	simpler	way	of
doing	it.

Generators	are	iterators	that	use	a	syntax	very	similar	to	functions,	using	a	yield
statement	instead	of	return.	When	a	normal	function	in	Python	is	called,	the	body	is
executed,	and	there	is	a	return	statement	(possibly	implicit)	that	stops	the	function
and	returns	control	back	to	the	caller.	When	a	generator	function	is	called,	the	body

of	the	function	is	not	executed,	instead	we	get	a	generator	object.	When	next	is	called
on	the	generator	object,	the	function	body	begins	executing	and	when	the	yield
statement	is	reached	the	value	supplied	to	yield	is	returned.	The	execution	of	the
function	is	suspended	at	this	point	and	the	local	state	of	the	function	is	preserved.
When	next	is	again	called	the	program	resumes	from	the	point	of	suspension	and
continues	until	the	next	yield	statement	is	reached.	In	this	way,	the	generator	code	is
constantly	starting	and	stopping,	generating	values	through	repetitive	yield
statements.	Below	is	an	example	of	a	generator	that	illustrates	this	behaviour	using
the	geometric	sequence	concept	from	before,	which	is	also	in	geometric2.py.

def	geometric(start,	ratio,	length=None)	:
				pos	=	0
				value	=	start
				while	length	is	None	or	pos	<	length	:
								yield	value
								value	*=	ratio
								pos	+=	1

>>>	powers_two	=	geometric(1,	2)
>>>	next(powers_two)
1
>>>	next(powers_two)
2
>>>	next(powers_two)
4
>>>	list(geometric(2,	3,	6))
[2,	6,	18,	54,	162,	486]

Here	is	another	simple	example.	The	print	statements	are	added	to	show	how	the
execution	of	the	generator	body	works.

def	gen_range(n)	:
				print('start')
				for	i	in	range(n)	:
								print('before	yield:	i	=',	i)
								yield	i
								print('after	yield:	i	=',	i)

>>>	gen	=	gen_range(3)
>>>	gen
<generator	object	gen_range	at	0x011DC350>
>>>	next(gen)
start
before	yield:	i	=	0
0
>>>	next(gen)
after	yield:	i	=	0
before	yield:	i	=	1
1
>>>	next(gen)
after	yield:	i	=	1
before	yield:	i	=	2
2
>>>	next(gen)
after	yield:	i	=	2
Traceback	(most	recent	call	last):
		File	"<pyshell#5>",	line	1,	in	<module>
				next(gen)
StopIteration

Generator	Syntax

The	syntax	for	writing	a	generator	is	the	same	as	for	functions,	except	the	body
of	the	generator	uses	yield	statements	in	the	function	body,	and	cannot	return	a
value.	The	syntax	for	a	yield	statement	is

<div	class="language-python	highlighter-rouge"><div	class="highlight"><pre	
class="highlight"><code>yield	<span	
class="n">value	</code></pre></div>				</div>

Semantics

Calling	the	function	does	not	execute	the	body,	but	returns	an	iterator.	Calling	
next	on	that	iterator	will	begin	executing	the	function	body,	stopping	at	the	first
yield	statement	and	returning	the	associated	value.	Subsequent	uses	of	next
resumes	from	the	point	where	the	function	body	was	stopped.	StopIteration	is
raised	when	the	function	body	ends.

List	Comprehensions
We	already	know	how	to	construct	lists	out	of	other	iterables,	using	loops	and
append.	For	example,	if	we	have	a	file	containing	a	collection	of	numbers,	such	as	the	
data1.txt	file,	and	we	want	to	read	in	the	numbers	into	a	list,	then	we	would	do
something	like	this:

f	=	open('data1.txt',	'r')
data	=	[]
for	line	in	f:
				data.append(float(line))
f.close()

For	what	is	arguably	a	simple	operation,	it	takes	a	few	lines	of	code,	and	it	might	not
be	immediately	obvious	what	it	does.	There	is	a	way	of	doing	the	same	thing	with	a
better	syntax,	called	a	list	comprehension:

f	=	open('data1.txt',	'r')
data	=	[float(line)	for	line	in	f]
f.close()

This	syntax	is	much	easier	to	type	and	read,	and	it	is	more	efficient.	What	if	we
wanted	to	ignore	certain	lines	in	the	dataset?	For	example,	if	there	are	blank	lines	in
the	file,	we	want	to	skip	those	lines	and	not	attempt	to	add	float(line)	to	the	list.	We
can	ignore	the	unwanted	values	by	adding	an	if	test	to	the	comprehension,	as	shown
below.

f	=	open('data1.txt',	'r')

data	=	[float(line)	for	line	in	f	if	line]
f.close()

Recall	that	if	line	is	equivalent	to	if	line	!=	"".	Below	are	three	more	examples	of	list
comprehension	in	action.	In	the	first,	we	simply	copy	the	list	l.	In	the	second	we
produce	the	list	of	squares	of	l	and	in	the	third	we	produce	the	list	of	squares	of	the
even	elements	of	l.	The	last	example	is	more	complex,	it	shows	how	comprehensions
can	be	used	to	generate	a	list	of	prime	numbers.

>>>	l	=	list(range(10))
>>>	l
[0,	1,	2,	3,	4,	5,	6,	7,	8,	9]
>>>	[i	for	i	in	l]
[0,	1,	2,	3,	4,	5,	6,	7,	8,	9]
>>>	[i*i	for	i	in	l]
[0,	1,	4,	9,	16,	25,	36,	49,	64,	81]
>>>	[i*i	for	i	in	l	if	i	%	2	==	0]
[0,	4,	16,	36,	64]
>>>	[i	for	i	in	range(2,50)	if	0	not	in	[i	%	j	for	j	in	range(2,i)]]
[2,	3,	5,	7,	11,	13,	17,	19,	23,	29,	31,	37,	41,	43,	47]

A	list	comprehension	can	handle	more	than	one	nested	loop.	The	first	two	examples
below	are	shown	as	both	a	loop	and	a	comprehension.

>>>	nums	=	[1,	2,	3]
>>>	letters	=	"spam"
>>>	
>>>	pairs	=	[]
>>>	for	i	in	letters	:
								for	j	in	nums	:
												pairs.append((i,	j))

>>>	pairs
[('s',	1),	('s',	2),	('s',	3),	('p',	1),	('p',	2),	('p',	3),	('a',	1),	('a',	2),	
('a',	3),	('m',	1),	('m',	2),	('m',	3)]
>>>	pairs	=	[(i,	j)	for	i	in	letters	for	j	in	nums]
>>>	pairs
[('s',	1),	('s',	2),	('s',	3),	('p',	1),	('p',	2),	('p',	3),	('a',	1),	('a',	2),	
('a',	3),	('m',	1),	('m',	2),	('m',	3)]
>>>	sums	=	[]
>>>	for	i	in	range(5)	:
								if	i	%	2	==	0	:
												for	j	in	range(4)	:
																sums.append(i+j)

>>>	sums
[0,	1,	2,	3,	2,	3,	4,	5,	4,	5,	6,	7]
>>>	[i+j	for	i	in	range(5)	if	i	%	2	==	0	for	j	in	range(4)]
[0,	1,	2,	3,	2,	3,	4,	5,	4,	5,	6,	7]
>>>	[i+j+k+l	for	i	in	'01'	for	j	in	'01'	for	k	in	'01'	for	l	in	'01']
['0000',	'0001',	'0010',	'0011',	'0100',	'0101',	'0110',	'0111',	'1000',	'1001',	
'1010',	'1011',	'1100',	'1101',	'1110',	'1111']

List	Comprehension	Syntax

The	syntax	for	list	comprehension	takes	one	of	the	following	forms:

<div	class="language-python	highlighter-rouge"><div	class="highlight"><pre	
class="highlight"><code>[<span	
class="n">expression	for	<span	
class="n">var	in	<span	
class="n">iterable]	[
expression	for	<span	
class="n">var	in	<span	
class="n">iterable	if	<span	
class="n">test]	</code></pre></div>				</div>

In	general,	there	can	be	any	number	of	“for	var	in	iterable”	forms	used	as
shown	below,	and	each	one	may	have	an	optional	“if	test”	after	it.

<div	class="language-python	highlighter-rouge"><div	class="highlight"><pre	
class="highlight"><code>[<span	
class="n">expression	for	<span	
class="n">var1	in	<span	
class="n">iterable1	for	<span	
class="n">var2	in	<span	
class="n">iterable2	for	<span	
class="n">var3	in	<span	
class="n">iterable3	...]	
[expression	<span	
class="k">for	var1	in	
iterable1	if	<span	
class="n">test1	for	var2	
in	iterable2	<span	
class="k">if	test2	...
]

</code></pre></div>	</div>

Semantics

The	comprehension	is	equivalent	to	constructing	a	list	using	for-loops	and	if
statements.

If	there	is	only	one	iterable	(the	first	two	forms	above),	set	var	to	each	element
of	iterable	and	evaluate	expression	and	add	it	to	the	list.	If	there	is	an	if	test,
then	include	only	those	expressions	where	the	test	is	True.

If	there	are	multiple	iterables,	then	it	is	equivalent	to	nested	for-loops,	where	
for	var1	in	iterable1	is	the	outermost	loop.

We	can	also	use	a	similar	notation	to	that	of	list	comprehension	to	create	generators
using	generator	expressions,	simply	by	replacing	the	square	brackets	in	the	list
comprehension	by	round	brackets	().	All	of	the	examples	of	list	comprehensions
above	can	be	turned	into	generator	expressions	by	using	round	brackets.	Often	the
result	of	a	comprehension	will	be	iterated	over,	and	using	a	generator	expression	in
this	situation	is	more	efficient.	Below	is	an	example.

>>>	gen	=	(i*i	for	i	in	range(10))

>>>	next(gen)
0
>>>	next(gen)
1
>>>	next(gen)
4
>>>	next(gen)
9

Aside:	More	Comprehensions

There	are	also	two	other	types	of	comprehensions	in	Python.	One	is	the
dictionary	comprehension,	which	can	be	used	to	make	a	dictionary,	using	{}
braces	instead	of	[]	brackets,	as	well	as	a	key:	value	expression.

<div	class="language-python	highlighter-rouge"><div	class="highlight"><pre	
class="highlight"><code>>>>	
{i:	<span	
class="n">i*i	<span	
class="k">for	i	in	
range(<span	
class="mi">10)}	{<span	
class="mi">0:	0<span	
class="p">,	1:	<span	
class="mi">1,	2<span	
class="p">:	4,	<span	
class="mi">3:	9<span	
class="p">,	4:	<span	
class="mi">16,	5<span	
class="p">:	25,	<span	
class="mi">6:	36<span	
class="p">,	7:	<span	
class="mi">49,	8<span	
class="p">:	64,	<span	
class="mi">9:	81<span	
class="p">}	>>>	<span	
class="n">x	=	'CSSE1001'	
>>>	{<span	
class="n">c:	x<span	
class="o">.count(<span	
class="n">c)	for	<span	
class="n">c	in	x<span	
class="p">}	{'1'<span	
class="p">:	2,	<span	
class="s">'0':	2<span	
class="p">,	'C':	<span	
class="mi">1,	'E'<span	
class="p">:	1,	<span	
class="s">'S':	2<span	
class="p">}	>>>	
{i:	<span	
class="n">x	for	i<span	
class="p">,	x	in	<span	
class="nb">enumerate(x
)}	{0
:	'C',	
1:	'S'
,	2:	
'S',	3
:	'E',	
4:	'1'

,	5:	
'0',	6
:	'0',	
7:	'1'
}	</code></pre></div>				</div>

Another	is	the	set	comprehension.	A	set	is	a	data	type	that	represents	an
unordered	collection	of	unique	elements.	They	are	efficient	at	checking	whether
or	not	an	element	is	in	a	collection.	Here	are	some	examples	of	sets	and	set
comprehensions:

<div	class="language-python	highlighter-rouge"><div	class="highlight"><pre	
class="highlight"><code>>>>	<span	
class="n">s	=	{<span	
class="mi">2,	4<span	
class="p">,	6,	<span	
class="mi">8,	6<span	
class="p">,	10}	<span	
class="o">>>>	s	
{8,	<span	
class="mi">10,	4<span	
class="p">,	2,	<span	
class="mi">6}	>>>
	4	in	<span	
class="n">s	True	>>>
	5	in	<span	
class="n">s	False	>>>
	{c	<span	
class="k">for	c	in	
'CSSE1001'}	
{'1',	<span	
class="s">'0',	'C'<span	
class="p">,	'E',	<span	
class="s">'S'}	>>>
	{i*
i	for	<span	
class="n">i	in	range
(10)}	
{0,	
1,	4
,	81,	
64,	9
,	16,	
49,	25
,	36}

</code></pre></div>	</div>

Higher-Order	Functions
Now	that	we	have	seen	iterators,	list	comprehension	and	generators	we	return	to
functional	programming.	Let’s	say	that	we	have	two	very	similar	functions	in	our
code.	The	first	sums	all	the	elements	in	a	list,	the	second	multiplies	them.	(There	is
already	a	built-in	sum	function,	for	the	purposes	of	this	section,	we	will	ignore	it	and
write	our	own.)

https://docs.python.org/3/library/functions.html#sum

def	my_sum(lst)	:
				result	=	0
				for	x	in	lst	:
								result	+=	x
				return	result

def	product(lst)	:
				result	=	1
				for	x	in	lst	:
								result	*=	x
				return	result

At	the	start	of	this	course,	we	learnt	to	abstract	similar	code	so	that	it	does	not	need
to	be	repeated,	and	turn	the	slight	differences	into	parameters	of	the	function,	so	we
should	be	able	to	perform	the	same	process	here,	and	abstract	these	functions	into	a
“combine”	function	which	reduces	a	list	into	one	value.

There	are	two	extra	arguments	that	the	combine	function	needs:	an	initial	value	to	set	
result	to,	and	an	operation	to	combine	elements	with.	A	way	that	we	can	do	this	is	to
use	a	function	as	a	parameter	which	represents	the	operation	to	perform	on	result
and	x.	Now	we	can	write	the	abstracted	function.

def	combine(operation,	lst,	initial)	:
				result	=	initial
				for	x	in	lst	:
								result	=	operation(result,	x)
				return	result

This	function	is	different	to	ones	we	have	seen	before,	since	the	operation	parameter	is
actually	another	function.	A	function	which	uses	other	functions	in	the	parameter	or
return	values,	such	as	combine,	is	called	a	higher-order	function.	We	have	seen	this
before,	when	creating	tkInter	Button	widgets:	Button(frame,	command=function),	and
using	the	bind	method:	widget.bind("<Button-1>",	function).	Notice	that	what	is	really
happening	here	is	that	the	function	is	being	treated	as	an	object	that	can	be	used	in
the	function	call.	Not	all	programming	languages	offer	the	ability	to	do	this,	but	it	is
still	very	useful.

Anonymous	Functions
So	how	do	we	use	the	combine	function?	If	we	want	to	sum	a	list	of	numbers,	we	can	do
this:

>>>	lst	=	[2,	4,	1,	5,	3]
>>>	def	add(x,	y)	:
								return	x	+	y
>>>	combine(add,	lst,	0)
15

It	works!	But,	that	seems	like	a	lot	of	effort,	having	to	define	an	addition	function	just
so	that	the	combine	function	works.	Then	for	every	other	operation,	we	would	need
another	trivial	function	definition	just	so	that	the	combine	function	can	use	it.	It
would	be	helpful	if	there	was	a	way	of	specifying	simple	functions	without	needing	to
write	a	def	statement.	Functions	like	this	are	called	anonymous	functions.	The

Python	syntax	to	write	an	anonymous	function	is	called	a	lambda	form.	The	name
lambda	comes	from	the	Lambda	Calculus	upon	which	functional	languages	are	built.
The	equivalent	of	the	add	function	above	is	just:

lambda	x,	y:	x	+	y

Here	it	is	used	with	combine.	Some	more	examples	of	lambda	expressions	are	shown
below.

>>>	combine(lambda	x,y:	x+y,	lst,	0)
15
>>>	double	=	lambda	x:	2*x
>>>	double
<function	<lambda>	at	0x011F2270>
>>>	double(3)
6
>>>	double(8)
16
>>>	multiply	=	lambda	x,y:	x	*	y
>>>	multiply(3,	4)
12
>>>	multiply(2,	'abc')
'abcabc'
>>>	zero	=	lambda:	0
>>>	zero
<function	<lambda>	at	0x011F22F0>
>>>	zero()
0

Lambda	Expression	Syntax

The	syntax	for	a	lambda	form	is:

<div	class="language-python	highlighter-rouge"><div	class="highlight"><pre	
class="highlight"><code>lambda	<span	
class="n">arg1,	arg2
,	...:	
expression	</code></pre></div>				</div>

There	may	be	zero	or	more	args.

Semantics

The	lambda	form	is	a	function	which	can	be	treated	as	an	expression.	This
means	it	can	be	assigned	to	variables,	used	in	function	calls	and	return	values,
or	used	in	larger	expressions.	It	is	often	used	as	a	way	of	defining	simple
functions	instead	of	using	the	def	statement.	It	is	equivalent	to	the	function
definition	below,	except	that	the	lambda	expression	does	not	have	the	name	f.

<div	class="language-python	highlighter-rouge"><div	class="highlight"><pre	

https://en.wikipedia.org/wiki/Lambda_calculus

class="highlight"><code>def	f
(arg1,	
arg2,	...
)	:
return	expression

</code></pre></div>	</div>

Note	that	the	only	thing	a	lambda	function	can	do	is	evaluate	and	return	an
expression.	A	function	that	requires	loops	or	large	blocks	of	code	should	be
created	using	a	def	statement.

As	a	final	thought,	we	can	redefine	the	original	my_sum	and	product	functions	using	
combine,	and	specifying	what	the	operation	and	initial	value	are.	The	third	concat
function	concatenates	a	list	of	strings	into	one	string.	As	a	challenge,	try	thinking	of
other	operations	that	can	be	used	with	combine.

def	my_sum(lst)	:
				return	combine(lambda	x,y:	x+y,	lst,	0)

def	product(lst)	:
				return	combine(lambda	x,y:	x*y,	lst,	1)

def	concat(strings)	:
				return	combine(lambda	x,y:	x+y,	strings,	'')

These	examples	can	be	downloaded,	including	the	original	definitions	of	my_sum,	
product	and	combine:	higher_order.py

Aside:	reduce	and	operator

The	combine	function	is	a	very	useful	function,	so	it	is	no	surprise	that	there	is	a
Python	library	for	functional	programming	(called	functools),	which	has	a
function	that	does	the	same	thing,	called	functools.reduce.	In	functional
programming	languages,	this	operation	is	known	as	a	fold.

The	most	common	use	of	reduce	is	with	operations	like	+	and	*,	so	it	would	be
nice	to	have	these	as	functions	instead	of	having	to	write	lambda	x,y:	x+y.	The
operator	module	provides	many	operators	as	functions.	Try	import	operator.

Returning	Functions
Another	form	of	higher-order	functions	are	those	that	return	a	function.	Imagine	a
situation	with	lots	of	similar	incrementing	functions:

def	add1(x)	:
				return	x	+	1

def	add5(x)	:
				return	x	+	5

https://docs.python.org/3/library/operator.html

def	add10(x)	:
				return	x	+	10

We	want	to	abstract	these,	but	in	particular	we	want	to	write	a	function	that	takes	a
number	n	(like	1,	5	or	10),	and	gives	back	a	function	that	adds	n.	A	function	that	adds	
n	to	its	input	x	is	simply:

lambda	x:	x	+	n

Then	this	lambda	expression	is	what	we	must	return.	The	“add	n”	function	is	shown
below	with	examples.

def	add_n(n)	:
				return	lambda	x:	x	+	n

>>>	add_n(3)(4)
7
>>>	add_n(1)(2)
3
>>>	add1	=	add_n(1)
>>>	add5	=	add_n(5)
>>>	add10	=	add_n(10)

Another	way	to	think	of	this	is	as	a	partial	application,	because	when	we	call	the	
add_n	function,	we	are	not	giving	it	all	the	information	it	needs	to	work	out	an	answer.
So	instead,	add_n	gives	back	another	function	which	waits	for	the	remaining	input.

Itertools
We	have	seen	some	of	the	potential	of	using	iterators	and	generators.	Python	includes
a	module	called	itertools	that	contains	a	variety	of	useful	iterators.	Here	we	will
briefly	explore	some	of	these.	There	are	more	details	in	the	Python	documentation.

>>>	from	itertools	import	count

The	count	function	returns	an	iterator	that	counts	numbers	from	a	given	starting
number	(or	0	if	no	number	is	given).

>>>	c	=	count(2)
>>>	next(c)
2
>>>	next(c)
3
>>>	next(c)
4
>>>	next(c)
5

https://docs.python.org/3/library/itertools.html

map	applies	a	function	to	each	value	in	an	iterable.	In	the	first	example	below,	it	uses	a
squaring	function	on	the	values	of	count(1)	which	has	the	effect	of	making	an	iterator
of	square	numbers.	filter	applies	a	test	to	each	value	in	the	iterable,	and	only	gives
back	the	values	that	pass	the	test.	In	the	second	example	below,	only	the	numbers
which	satisfy	x%2	==	0	are	allowed.	The	third	example	shows	a	combination	of	both	a
filter	and	a	map.

>>>	squares	=	map(lambda	x:x*x,	count(1))
>>>	next(squares)
1
>>>	next(squares)
4
>>>	next(squares)
9
>>>	evens	=	filter(lambda	x:	x%2	==	0,	count(1))
>>>	next(evens)
2
>>>	next(evens)
4
>>>	next(evens)
6
>>>	even_squares	=	map(lambda	x:x*x,	filter(lambda	x:	x%2	==	0,	count(1)))
>>>	next(even_squares)
4
>>>	next(even_squares)
16
>>>	next(even_squares)
36
>>>	x	=	"This	is	a	short	sentence"
>>>	list(map(lambda	x:(x,	len(x)),	x.split()))
[('This',	4),	('is',	2),	('a',	1),	('short',	5),	('sentence',	8)]

The	product,	permutations,	combinations	and	combinations_with_replacement	functions
provide	the	Cartesian	product	and	other	combinatoric	selections	of	elements.

>>>	from	itertools	import	product,	permutations,	combinations,	
combinations_with_replacement
>>>	list(product('ABC',	'123'))
[('A',	'1'),	('A',	'2'),	('A',	'3'),	('B',	'1'),	('B',	'2'),	('B',	'3'),	('C',	
'1'),	('C',	'2'),	('C',	'3')]
>>>	[''.join(x)	for	x	in	product('01',	repeat=3)]
['000',	'001',	'010',	'011',	'100',	'101',	'110',	'111']
>>>	list(permutations((1,	2,	3)))
[(1,	2,	3),	(1,	3,	2),	(2,	1,	3),	(2,	3,	1),	(3,	1,	2),	(3,	2,	1)]
>>>	list(combinations((1,	2,	3),	2))
[(1,	2),	(1,	3),	(2,	3)]
>>>	list(combinations_with_replacement((1,	2,	3),	2))
[(1,	1),	(1,	2),	(1,	3),	(2,	2),	(2,	3),	(3,	3)]

To	finish	this	section	we	give	two	more	advanced	examples	using	this	module.

Adding	Line	Numbers

For	the	first	example	we	want	to	write	a	function	that	takes	a	text	file	as	input	and
prints	out	the	contents	of	the	file	with	each	line	prepended	with	the	line	number.
Here	is	the	code	(add_linenum.py).

import	sys
import	itertools

in_file	=	sys.argv[1]

f	=	open(in_file,	'r')

for	line	in	map("{0:4d}:	{1}".format,	count(1),	f):
				print(line,	end="")

f.close()

This	program	is	designed	to	be	run	from	the	command	line	as	follows:

python	add_linenum.py	name_of_text_file

The	sys	module,	among	other	things,	provides	a	mechanism	to	access	the	arguments
of	the	command.	The	attribute	argv	is	the	list	of	arguments.	The	0’th	argument	is	the
name	of	the	command	itself	(in	this	case	add_linenum.py)	and	the	first	argument	is	the
name	of	the	file	we	want	processed.	The	first	step	is	to	open	the	file.	Now	f	is	a
generator	and	so	we	can	use	the	iterator	functions	on	it.	We	use	map	with	three
arguments:	a	function	that	takes	two	arguments	and	two	iterators.	The	result	will	be
an	iterator	that	uses	the	function	to	pairwise	combine	the	contents	of	the	two	input
iterators.	Note	that,	by	using	the	infinite	iterator	count	we	do	not	have	to	go	to	the
trouble	of	constructing	some	list	that	has	the	same	length	as	the	contents	of	the	file.

Sieve	of	Eratosthenes

The	final	example	is	to	implement	the	Sieve	of	Eratosthenes	for	computing	the	list	of
prime	numbers	using	generators.	This	is	a	very	complicated	but	dramatic	example	of
the	power	of	lazy	evaluation	(using	generators)!	Here	is	the	code	(sieve.py).

import	itertools

def	isnotdiv(p)	:
				return	lambda	v:	(v	%	p)	!=	0

def	primes()	:
				ints	=	itertools.count(2)
				while	True	:
								prime	=	next(ints)
								yield	prime
								ints	=	filter(isnotdiv(prime),	ints)

>>>	prime	=	primes()
>>>	next(prime)
2
>>>	next(prime)
3
>>>	next(prime)
5

Our	two	weapons	are	fear	and	surprise…and	ruthless	efficiency

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

Complexity	and	Computability
Efficiency
It	is	not	enough	to	write	a	program	that	works	correctly,	the	program	must	also	be
efficient.	What	makes	a	program	efficient?	There	are	two	types	of	efficiency	that	we
consider	in	software	development:	time	(how	fast	the	program	runs)	and	space	(how
much	of	the	computer’s	memory	is	being	used).

Writing	fast	software	is	important	because	users	will	be	less	satisfied	if	a	program	is
slow.	Writing	software	that	uses	minimal	space	is	important	because	computers	have
limited	resources.	In	this	section,	we	will	discuss	time	efficiency,	but	similar
techniques	can	be	applied	to	work	out	space	efficiency.

How	different	can	two	programs	be	in	time	efficiency?	Let’s	look	at	an	example
involving	the	Fibonacci	sequence,	which	is	a	sequence	of	numbers	defined	as:

fib(0)	=	0
fib(1)	=	1
fib(n)	=	fib(n-1)	+	fib(n-2)	for	n	>	1

This	recursive	definition	can	be	directly	translated	into	a	recursive	function	in	Python
as	follows.

def	fibonacci1(n:	int)	->	int:
				if	n	==	0:
								return	0
				elif	n	==	1:
								return	1
				else:
								return	fibonacci1(n-1)	+	fibonacci1(n-2)

>>>	for	i	in	range(10):	print(fibonacci1(i),	end="	")

0	1	1	2	3	5	8	13	21	34	

It	turns	out	that	this	direct	translation	does	not	produce	a	very	efficient	algorithm
because	we	end	up	recomputing	Fibonacci	numbers	over	and	over	again.	We	can	do
much	better	by	keeping	track	of	the	previous	two	Fibonacci	numbers	and	that	leads
to	the	solution	below.

def	fibonacci2(n:	int)	->	int:
				fib1	=	0
				fib2	=	1
				for	i	in	range(n)	:
								#	loop	invariant:	a	is	the	i'th	fib	and	b	is	the	(i+1)'th	fib
								fib1,	fib2	=	fib2,	fib1+fib2
				return	fib1

These	functions	are	in	fib.py.	We	have	also	included	functions	to	determine	the
runtime	of	the	two	Fibonacci	functions	using	the	time	module.	Let’s	run	them	to	see

the	results:

>>>	time_fib1(30)
fibonacci1(30)	took	309.849	ms
>>>	time_fib1(31)
fibonacci1(31)	took	455.199	ms
>>>	time_fib1(32)
fibonacci1(32)	took	763.001	ms

We	would	like	to	analyse	these	results,	and	estimate	the	running	time	of	fibionacci1(n)
for	large	values	of	n.	How	does	the	running	time	change	when	we	increase	n	by	1?

>>>	455.199/309.849
1.469099
>>>	763.001/455.199
1.676192

It	turns	out	that	if	we	compute	fibionacci1(n+1),	the	time	taken	is	about	1.6	times	the
time	it	takes	to	compute	fibionacci1(n).	From	this,	we	can	determine	that	the	time	to
compute	fibionacci1(n+10)	is	a	little	over	100	times	the	time	to	compute	fibionacci1(n).

>>>	1.6**10
109.95116277760006

How	long	will	it	take	to	compute	fibionacci1(40)?	We	estimate	that	it	would	take	
1.6**10	*	309.849	ms,	which	is	about	34	seconds.	Extrapolating	further,	we	find	that	
fibionacci1(50)	would	take	just	over	one	hour,	and	fibionacci1(100)	would	take	over
1,900,000	years!	On	the	other	hand	we	get	the	following	for	the	second	algorithm.

>>>	time_fib2(30)
fibonacci2(30)	took	0.000	ms
>>>	time_fib2(10000)
fibonacci2(30000)	took	31.215	ms
>>>	time_fib2(30000)
fibonacci2(300000)	took	709.301	ms

Note	that	the	dramatic	difference	is	not	because	one	is	recursive	and	one	is	not	—	if
we	rewrote	the	second	algorithm	as	a	recursive	function,	it	would	still	be	very
efficient.

Note	also	that	the	exact	running	times	will	be	different	when	it	is	run	on	different
processors,	in	different	programming	languages,	etc.	However,	the	resulting	analysis
will	still	be	the	same,	that	as	n	increases,	the	running	time	increases	by	a	factor	of
about	1.6.

Measuring	Efficiency
In	the	above	analysis,	we	have	seen	how	to	estimate	the	running	time	of	the	
fibionacci1	function	for	certain	values	of	n.	We	would	like	to	make	this	more	general
and	describe	the	efficiency,	called	the	complexity,	of	fibionacci1	so	that	it	can	be

compared	to	other	functions.	Since	the	exact	running	time	can	differ,	we	will	instead
describe	how	the	running	time	grows	with	larger	inputs,	without	having	to	worry
about	exact	details.

From	the	analysis	above,	we	see	that	the	running	time	of	fibionacci1(n)	is	related	to
1.6n.	In	fact,	the	only	important	information	is	that	the	running	time	is	exponential	in	
n.	The	1.6	is	not	important,	and	the	complexity	could	equally	be	described	as	2n	or	en

(it	is	common	to	use	either	of	these	to	describe	exponential	functions).

Before	continuing,	we	need	a	notation	that	we	can	use	to	mean	that	we	do	not	care
about	the	exact	details.

Big	O	Notation
The	big	O	notation	is	used	to	provide	an	upper	bound	on	a	mathematical	function.
Formally,	we	say	that	“f(n)	is	of	order	g(n)”,	and	write	“f(n)	is	O(g(n))”,	if	there	are
constants	a	and	k	such	that	f(n)≤a×g(n)	for	all	n	>k.	Informally,	f(n)	is	of	order	g(n)	if
some	multiple	of	g(n)	is	an	upper	bound	of	f(n).

It	is	common	to	use	only	the	most	significant	term	when	describing	the	order	of	a
function,	and	to	ignore	any	coefficients.	For	example,	3n^2+4n-2	is	O(n^2),
2n^2+8n	is	also	O(n^2),	and	3^n+n^2	is	O(2^n).

Big	O	notation	is	used	to	describe	the	complexity	of	a	program,	where	n	represents
the	size	of	the	input.	For	example,	the	running	time	of	fibionacci1	is	O(2^n).

A	complexity	class	is	a	collection	of	functions	with	the	same	complexity	(when
expressed	in	the	big	O	notation).	Some	of	the	common	complexity	classes	are:

Complexity Common	Name
O(1) Constant
O(log	n) Logarithmic
O(n) Linear
O(n^2) Quadratic
O(2^n) Exponential

Once	the	complexity	of	a	function	is	known,	we	can	compare	it	to	the	complexity	of
other	functions.	In	the	table	above,	we	have	listed	the	classes	from	the	most	efficient
(constant)	to	the	least	efficient	(exponential).	When	designing	algorithms	we	strive	for
the	most	efficient	algorithm.

Calculating	Rate	of	Growth
How	can	we	determine	the	complexity	of	a	function?	Instead	of	performing	an
experimental	analysis,	we	can	directly	analyse	the	source	code.	In	practice	this	can	be
quite	difficult,	so	we	will	consider	several	examples.	In	our	analysis,	we	will	think
about	how	many	steps	the	function	takes	to	complete	if	it	were	executed.	Looking	at
how	many	times	a	loop	body	is	executed,	or	how	many	recursive	calls	are	needed	to
reach	the	base	case,	will	give	a	good	indication	of	the	complexity.

Constant	Time

A	function	that	runs	in	constant	time	—	O(1)	—	cannot	have	any	loops	or	recursive
steps	which	depend	on	the	size	of	the	input.	The	defining	characteristic	of	constant
time	functions	is	that	changing	the	size	of	the	input	has	no	effect	on	the	running	time.
For	example,	these	functions	run	in	constant	time:

def	square(n:	int)	->	int:
				return	n**2

def	abs(n:	int)	->	int:
				if	n	>	0:
								return	n
				else	:
								return	-n

Linear	Time

A	function	runs	in	linear	time	—	O(n)	—	if	the	number	of	iterations	of	loops	in	the
function	is	proportional	to	the	size	of	the	input	(and	the	body	of	the	loops	run	in
constant	time).	A	characteristic	to	observe	in	linear-time	functions	is	that	doubling
the	size	of	the	input	makes	the	function	twice	as	slow.	Below	are	examples	of
functions	that	run	in	linear	time.

def	find(char:	str,	string:	str)	->	int:
				for	i,	c	in	enumerate(string):
								if	c	==	char:
												return	i
				return	-1

def	sumto(n:	int)	->	int:
				total	=	0
				i	=	0
				while	i	<=	n:
								total	+=	i
								i	+=	1
				return	total

It	is	important	to	specify	what	inputs	determine	the	complexity	of	the	function.	The	
find	function	above	is	linear	in	terms	of	the	length	of	the	string,	and	the	sumto	function
is	linear	in	terms	of	the	input	n.

A	recursive	function	runs	in	linear	time	if	the	number	of	recursive	steps	to	the	base
case	is	proportional	to	the	size	of	the	input.	The	factorial	function	below	must	make	a
total	of	n	recursive	steps,	so	its	running	time	is	O(n).

def	factorial(n:	int)	->	int:
				if	n	==	0:
								return	1
				else:
								return	factorial(n-1)	*	n

Quadratic	Time

A	characteristic	of	quadratic	time	—	O(n^2)	—	functions	is	that	doubling	the	size	of
the	input	makes	the	running	time	four	times	as	large.	Many	functions	that	run	in
quadratic	time	have	two	nested	loops,	where	the	number	of	iterations	in	each	loop	is
proportional	to	the	size	of	the	input.	The	following	functions	run	in	quadratic	time.

def	pairs(lst):
				result	=	[]
				for	element1	in	lst:
								for	element2	in	lst:
												result.append((element1,	element2))
				return	result
def	primes_to(n:	int)	->	list[int]:
				"""Return	a	list	of	primes	<=	n."""
				primes	=	[]
				for	i	in	range(2,	n+1):
								is_prime	=	True
								for	j	in	range(2,	i):
												if	i	%	j	==	0:
																is_prime	=	False
								if	is_prime:
												primes.append(i)
				return	primes

The	pairs	function	runs	in	O(n^2)	time	where	n	is	the	length	of	the	list.	This	is
because	the	inner	loop	takes	n	steps	to	run,	which	is	then	repeated	n	times	by	the
outer	loop.

The	primes_to	function	is	slightly	different.	The	outer	loop	runs	n-1	times,	which	is
O(n).	The	inner	loop	runs	i-2	times,	but	i	takes	a	different	value	on	each	iteration,	so
how	do	we	represent	the	running	time	in	terms	of	n?

If	we	sum	up	the	number	of	iterations	of	the	inner	loop,	we	get	0+1+2+3+⋯+(n-3)=
(n-3)(n-2)⁄2,	which	is	quadratic.	A	less	formal	reasoning	would	be	that	i	averages	to
about	n⁄2	over	all	iterations	of	the	outer	loop,	so	the	total	running	time	is	about	n^2⁄2,
which	is	quadratic.

Logarithmic	Time

The	defining	characteristic	of	logarithmic	—	O(log⁡(n))	—	functions	is	that	doubling	the
input	size	will	only	increase	the	running	time	by	a	fixed	amount.	A	way	of	recognising
a	logarithmic	function	is	that	at	each	step	through	the	function,	the	“remaining
problem”	will	be	reduced	by	a	significant	factor.	For	example,	consider	the	following
function,	which	computes	the	binary	digits	of	a	number,	starting	with	the	least
significant.

def	binary(number:	int)	->	list[int]:
				result	=	[]
				while	number	>	0:
								if	number	%	2	==	0:
												result.append(0)
								else:
												result.append(1)
								number	/=	2
				return	result

Notice	that	each	step	through	the	loop	halves	the	number,	which	halves	the	size	of	the
remaining	problem.	Because	of	this,	the	binary	function	runs	in	O(log⁡(n))	time.

Two	of	the	methods	in	the	Node	class	from	the	module	about	recursion	are	also
logarithmic:	the	insert	and	__contains__	methods	both	make	a	recursive	call	into	one	of
the	two	children	of	the	node.	In	effect,	this	(roughly)	halves	the	size	of	the	“remaining
problem”,	which	is	the	number	of	nodes	that	still	need	to	be	considered.	Because

binary	search	trees	have	very	efficient	insert	and	__contains__	methods,	they	can	be
very	useful	ways	of	storing	data.

This	only	holds	true	if	the	tree	is	balanced,	that	is,	if	each	node	in	the	tree	has	a
roughly	equal	distribution	of	nodes	in	the	left	and	right	subtrees.	The	other	possible
extreme	is	that	each	node	in	the	tree	has	only	one	child,	then	the	tree	behaves	more
like	a	consecutive	list	of	values,	and	insert	and	__contains__	will	run	in	linear	time,	and
the	tree	will	no	longer	be	a	useful	way	of	storing	data.	For	this	reason,	many	forms	of
self-balancing	binary	search	trees	have	been	developed,	which	ensure	they	remain
balanced	when	data	is	inserted	or	removed.

Exponential	Time

An	example	of	a	function	which	runs	in	exponential	time	—	O(2^n)	—	is	the	
fibionacci1	function	from	above	(which	is	available	in	fib.py).	This	function	is
exponential	because	there	are	two	recursive	calls	made	in	the	recursive	step.	The
effect	of	this	is	that	when	the	input	n	increases	by	1,	our	function	needs	to	do	nearly
twice	as	many	steps	(more	accurately,	1.6	times	as	many	steps)	to	compute	a	result.

The	important	characteristic	of	exponential	time	functions	is	that	increasing	the	input
size	by	1	will	multiply	the	running	time	by	a	factor.

Aside:	Things	aren’t	as	they	seem…

Though	it	may	seem	obvious	that	a	function	appears	to	have	a	certain	time
complexity,	other	factors	can	come	into	the	running	time	as	well.	If	we	analyse
the	efficient	Fibonacci	algorithm	it	appears	to	be	linear.	However,	if	we	do	the
timing	experiment	we	see	that	it	is	not	linear.	It	turns	out	that	Fibonacci
numbers	get	very	big	very	quickly	and	so	the	time	taken	to	add	two	adjacent
Fibonacci	numbers	becomes	significant	—	and	has	to	be	factored	into	the
calculations.	It	appears	from	timing	experiments	that,	for	very	large	n,	doubling
n	will	make	the	time	go	up	by	about	a	factor	of	3	—	so	the	complexity	is	worse
than	linear	but	better	than	quadratic.

Functions	within	Functions
How	is	the	complexity	of	a	function	affected	when	it	calls	other	functions?	If	a
function	calls	another	function,	the	complexity	of	that	other	function	will	have	an
impact	on	the	complexity	of	the	first	function.	As	an	example,	consider	these	two
functions:

def	factorial(n:	int)	->	int:
				if	n	==	0:
								return	1
				else:
								return	factorial(n-1)	*	n

def	sum_factorial(n:	int)	->	int:
				"""	Return	1!	+	2!	+	...	+	n!	-	i.e.	the	sum	of	the	factorials	up	to	n."""
				sum	=	0
				m	=	1
				while	m	<=	n:
								sum	+=	factorial(m)
								m	+=	1
				return	sum

We	already	know	that	the	factorial	function	runs	in	O(n)	time,	but	what	about	the	
sum_factorial	function?	In	the	loop,	m	starts	at	1	and	increments	until	it	gets	to	n.
However,	this	does	not	make	it	a	linear	algorithm	because	the	body	of	the	loop
contains	a	call	that	is	linear	in	m.	So	the	time	taken	is	proportional	to	1+2+3+⋯+n=
(n×(n+1))⁄2	—	making	the	function	quadratic.

What	about	when	we	are	using	other	functions	that	we	did	not	write?	Without
knowing	the	complexity	of	other	functions,	we	cannot	determine	the	running	time	of
our	own	programs.	If	the	source	code	is	available,	we	could	analyse	it	as	above.	The
author	of	the	other	code	may	have	included	information	about	the	time	and	space
complexities	in	the	documentation.	This	would	be	very	helpful,	especially	if	we	do	not
have	access	to	the	source	code.	Alternatively,	we	could	carry	out	timing	experiments,
as	we	did	with	fibionacci1,	to	deduce	the	complexity.

The	complexity	of	standard	Python	functions	and	operations	also	needs	to	be
considered.	What	is	the	complexity	of	the	built-in	functions	and	methods,	such	as	sum,	
min,	or	list.append?	What	about	list	addition?	Or	string	addition?

The	code	in	list_time.py	will	experimentally	determine	the	running	time	of	many	list
operations.	Below	are	some	results	(each	command	was	repeated	1000	times,	the
results	were	averaged,	and	are	measured	in	microseconds).

xs.append(0):
		list	of	length	10000:	0.8640663673243391	us
		list	of	length	20000:	0.9903276535270789	us
		list	of	length	40000:	1.578083090180371	us
xs[0]:
		list	of	length	10000:	0.3674386415868369	us
		list	of	length	20000:	0.6851047181877234	us
		list	of	length	40000:	0.684738743433666	us
xs[-1]:
		list	of	length	10000:	0.3872012777055289	us
		list	of	length	20000:	0.7191403692736742	us
		list	of	length	40000:	0.8018506610625309	us
xs[0:100]:
		list	of	length	10000:	1.2208917414007203	us
		list	of	length	20000:	1.7446015980686624	us
		list	of	length	40000:	1.8748886064123838	us
xs[0:10000]:
		list	of	length	10000:	53.55271811269802	us
		list	of	length	20000:	57.665908245043696	us
		list	of	length	40000:	62.512145786778106	us
xs[1:-1]:
		list	of	length	10000:	54.147427069450416	us
		list	of	length	20000:	112.26568009637639	us
		list	of	length	40000:	230.8202701698896	us
xs.insert(0,	0):
		list	of	length	10000:	8.216132971785584	us
		list	of	length	20000:	15.295182418274322	us
		list	of	length	40000:	29.147692401203074	us
xs.pop(0):
		list	of	length	10000:	6.027604010938603	us
		list	of	length	20000:	12.176711636406878	us
		list	of	length	40000:	22.701779259406862	us
xs.pop(-1):
		list	of	length	10000:	0.806608332709402	us
		list	of	length	20000:	1.1729490500478335	us
		list	of	length	40000:	1.3764310069532826	us
xs	+	xs:
		list	of	length	10000:	112.45232721501708	us
		list	of	length	20000:	232.56779956593476	us
		list	of	length	40000:	470.1520149288214	us

It	can	be	seen	that	append	and	list	indexing	both	run	in	constant	time	(allowing	for
slight	variations	in	the	running	times).	A	list	slice	runs	in	time	proportional	to	the
length	of	the	slice.	This	means	that	if	a	slice	is	taken	from	the	start	to	the	end	of	the
list,	it	will	take	linear	time	in	terms	of	the	length	of	the	list.	Inserting	to	the	front	of	a
list	runs	in	linear	time,	as	does	list	addition.	The	pop	method	is	somewhat	more
interesting:	it	runs	in	linear	time	if	the	first	element	is	removed,	and	constant	time	if
the	last	element	is	removed.

Note	that	one	consequence	of	this	is	that	inserting	and	removing	from	a	list	is	best
done	from	the	end	of	the	list,	using	append	and	pop(-1),	because	these	are	both
constant,	whereas	the	same	operations	on	the	start	of	the	list	are	slower.	Being	able
to	take	advantage	of	properties	like	this	one	is	an	important	skill	in	software
engineering.

Aside:	Guess	the	implementation

Sometimes	it	can	be	insightful	to	“guess”	what	the	implementation	of	a	function
would	look	like	to	get	a	better	understanding	of	why	the	time	complexity	is
what	it	is,	and	whether	or	not	it	can	be	improved.	For	example,	it’s	not	difficult
to	determine	that	the	sum	function	must	visit	every	element	of	the	list	to
calculate	the	total,	so	sum	must	be	linear,	it	can’t	be	logarithmic	or	constant.

From	the	experiment	above	on	lists,	we	can	guess	that	slicing	and	addition
work	by	copying	all	of	the	required	elements	into	a	new	list,	which	is	why	they
are	linear.	If	inserting	and	removing	from	the	start	of	a	list	runs	in	linear	time,
we	might	guess	that	the	underlying	implementation	needs	to	do	some	extra
work	on	the	rest	of	the	list.	It	may	be	interesting	to	research	two	different
implementations	of	lists:	“arrays”	and	“linked	lists”.

Computability:	The	Halting	Problem
In	the	remainder	of	this	section	we	will	look	at	a	new	topic,	computability	theory,
which	studies	functions	and	algorithms	from	a	mathematical	perspective.	One
question	in	this	field	is	deciding	whether	or	not	a	given	function	will	finish	executing
or	loop	forever.	In	this	section,	we	will	only	consider	functions	that	take	a	single
string	argument.	For	example,	consider	this	function:

def	factorial(number):
				n	=	int(number)
				fact	=	1
				while	n	!=	0:
								fact	*=	n
								n	-=	1
				return	fact

Calling	this	function	with	a	positive	integer,	such	as	factorial('3'),	will	finish
executing.	However,	factorial('-2')	will	never	finish	executing,	as	the	loop	will	never
stop.	Note	that	we	are	considering	if	the	function	will	ever	finish,	even	if	it	takes	a
long	time.	For	example,	factorial('1000000000000')	will	take	a	very	long	time,	but	it	will
still	be	able	to	finish.

We	now	pose	the	problem:	Write	a	program	which	takes	the	source	code	of	a	function
(as	a	string)	and	an	input,	and	determines	whether	or	not	the	function	will	stop
executing.	This	problem	is	known	as	the	halting	problem.	This	would	not	be	an	easy

task,	because	it	would	have	to	handle	every	possible	function	we	could	write.

In	fact,	Alan	Turing	proved	in	1936	that	writing	such	a	program	is	impossible.	This	is
an	alarming	result,	as	it	was	one	of	the	first	problems	where	it	could	be	proved	that	a
solution	could	not	be	found.	Here	we	will	give	a	proof	by	contradiction,	where	we
assume	that	we	can	solve	the	halting	problem,	and	then	prove	that	assumption	leads
to	a	contradiction.

Assume	that	we	have	a	function	halt,	which	takes	the	source	code	of	a	function	(as	a
string),	and	an	input,	and	returns	True	if	the	function	will	finish	when	given	that	input.
The	function	definition	would	look	like	this:

def	halt(code,	input):
				"""Determine	if	the	given	function	'code'	will	finish	executing.

				Parameters:
								code	(str):	Source	code	for	the	function	to	be	analysed.
								input:	The	input	to	be	passed	to	the	function	'code'.

				Return	(bool):
								True	if	the	function	stops	when	given	the	input.
								False	if	the	function	continues	forever	when	given	the	input.
				"""
				#	Solution	goes	here...
				#	...

For	example,	halt(factorial_code,	'3')	is	True	and	halt(factorial_code,	'-2')	is	False,
where	factorial_code	is	the	function	definition	above.	Notice	that,	in	a	proof	by
contradiction,	it	is	enough	to	assume	that	a	working	function	is	available	to	us,	we	do
not	actually	need	to	write	it.	Now,	consider	this	function,	which	takes	a	string	x:

def	g(x):
				if	halt(x,	x):
								while	True:
												print("Keep	going...")
				else:
								print("Stop!")

Now	we	ask,	if	g_code	is	the	source	code	of	the	function	above,	what	does	g(g_code)	do?

If	halt(g_code,	g_code)	is	True,	then	g(g_code)	runs	forever,	meaning	that	
halt(g_code,	g_code)	gave	an	incorrect	result.
If	halt(g_code,	g_code)	is	False,	then	g(g_code)	stops,	meaning	that	halt(g_code,	
g_code)	gave	an	incorrect	result.

This	means	that	our	initial	assumption	that	a	working	halt	function	exists	leads	to	a
contradiction.	Therefore,	it	is	impossible	to	write	a	function	that	will	solve	the	halting
problem.

