
Our	galaxy	itself	contains	a	hundred	million	stars;

It’s	a	hundred	thousand	light-years	side	to	side;

It	bulges	in	the	middle	sixteen	thousand	light-years	thick,

But	out	by	us	it’s	just	three	thousand	light-years	wide.

Arithmetic,	Basic	Types	and	Variables
Python	Arithmetic	and	Integers

Python	understands	arithmetical	expressions	and	so	the	interpreter	can	be	used	as	a
calculator.	For	example:

>>>	2	+	3	*	4
14
>>>	(2	+	3)	*	4
20
>>>	10	-	4	-	3
3
>>>	10	-	(4	-	3)
9
>>>	-3	*	4
-12
>>>	2	**	3
8
>>>	2	*	3	**	2
18
>>>	(2	*	3)	**	2
36
>>>	7	//	3
2

(Notice	how	**	is	the	Python	operator	for	exponentiation.)

There	are	a	few	things	worth	pointing	out	about	these	examples.	Firstly,	the	Python
interpreter	reads	user	input	as	strings	–	i.e.	sequences	of	characters.	So	for	example,
the	first	user	input	is	read	in	as	the	string	“2	+	3	*	4”.	This	is	treated	by	the
interpreter	as	a	piece	of	syntax	–	in	this	case	valid	syntax	that	represents	an
arithmetic	expression.	The	interpreter	then	uses	the	semantics	to	convert	from	a
string	representing	an	arithmetic	expression	into	the	actual	expression.	So	the
substring	“2”	is	converted	to	its	semantics	(meaning)	–	i.e.	the	number	2.	The
substring	“+”	is	converted	to	its	meaning	–	i.e.	the	addition	operator.	Once	the
interpreter	converts	from	the	syntax	to	the	semantics,	the	interpreter	then	evaluates
the	expression,	displaying	the	result.

This	process	of	converting	from	syntax	to	semantics	is	called	parsing.

Secondly,	the	relationship	between	the	arithmetical	operators	is	what	humans
normally	expect	–	for	example,	multiplication	takes	precedence	over	addition.	When
looking	at	expressions	involving	operators,	we	need	to	consider	both	precedence	and
associativity.

Precedence	of	operators	describes	how	tightly	the	operators	bind	to	the	arguments.
For	example,	exponentiation	binds	more	tightly	than	multiplication	or	division,	which
in	turn	bind	more	tightly	than	addition	or	subtraction.	Precedence	dictates	the	order

of	operator	application	(i.e.	exponentiation	is	done	first,	etc.)

Associativity	describes	the	order	of	application	when	the	same	operator	appears	in	a
sequence	–	for	example	10	-	4	-	3.	All	the	arithmetical	operators	are	left-associative	–
i.e.	the	evaluation	is	from	left	to	right.	Just	like	in	mathematics,	we	can	use	brackets
when	the	desired	expression	requires	the	operators	to	be	evaluated	in	a	different
order.

Finally,	dividing	one	integer	by	another,	using	the	//	divide	operator	(known	as	the	div
operator),	produces	an	integer	–	the	fractional	part	of	the	answer	is	discarded.

These	examples	are	about	integer	arithmetic	–	integers	form	a	built-in	type	in	Python.

>>>	type(3)
<class	'int'>

Note	how	the	abbreviation	for	integers	in	Python	is	int.	Also,	note	that	type	is	a	built-
in	Python	function	that	takes	an	object	(in	this	case	the	number	3)	and	returns	the
type	of	the	object.	We	will	see	plenty	of	examples	of	Python	functions	in	following
sections.

Floats

There	is	another	number	type	that	most	programming	languages	support	–	floats.
Unlike	integers,	which	can	only	store	whole	numbers,	floats	can	store	fractional	parts
as	well.	Below	are	some	examples	involving	floats	in	Python.

>>>	7/4
1.75
>>>	7//4
1
>>>	-7//4
-2
>>>	7.9//3
2.0
>>>	2.0**60
1.152921504606847e+18
>>>	0.5**60
8.6736173798840355e-19
>>>	2e3
2000.0
>>>	type(2e3)
<class	'float'>
>>>	int(2.3)
2
>>>	float(3)
3.0
>>>	5/6
0.8333333333333334
>>>	-5/6
-0.8333333333333334

The	syntax	for	floats	is	a	sequence	of	characters	representing	digits,	optionally
containing	the	decimal	point	character	and	also	optionally	a	trailing	‘e’	and	another
sequence	of	digit	characters.	The	character	sequence	after	the	‘e’	represents	the
power	of	10	by	which	to	multiply	the	first	part	of	the	number.	This	is	called	scientific
notation.

The	first	example	shows	that	dividing	two	integers	with	the	/	operator	gives	a	float
result	of	the	division.	The	single	/	division	is	known	as	float	division	and	will	always
result	in	a	float.	If	an	integer	result	is	desired,	the	//	operator	must	be	used.	This	is
the	integer	division	operator	and	will	divide	the	two	numbers	as	if	they	are	integers
(performs	the	mathematical	operation	div).	Note	that	this	will	always	round	down
towards	negative	infinity,	as	shown	in	the	third	example.	If	one	of	the	numbers	is	a
float,	it	turns	both	numbers	into	their	integer	form	and	then	performs	the	integer
division	but	returns	a	float	answer	still,	as	seen	in	the	third	example.

The	last	two	examples	highlights	one	very	important	aspect	of	floats	–	they	are
approximations	to	numbers.	Not	all	decimal	numbers	can	be	accurately
represented	by	the	computer	in	its	internal	representation.	This	is	because	floats
occupy	a	fixed	chunk	of	memory.	The	amount	of	memory	used	to	store	a	float
constrains	the	precision	of	the	numbers	that	it	can	represent.

Variables	and	Assignments

Most	calculators	allow	results	to	be	stored	away	in	memory	and	later	retrieved	in
order	to	carry	out	complex	calculations.	This	can	be	done	in	Python	by	using
variables.	As	we	will	soon	see,	variables	are	not	just	for	numerical	calculations	but
can	be	used	to	store	any	information	for	later	use.

The	valid	syntax	for	variables	is	any	string	starting	with	an	alphabetic	or	underscore
character	(‘a’-‘z’	or	‘A’-	‘Z’	or	‘’)	followed	by	a	sequence	of	alphanumeric	characters
(alphabetic	+	‘0’-‘9’)	and	‘’.	Python	uses	special	keywords	itself	and	these	cannot	be
used	for	any	other	purpose	(for	example,	as	variable	names).	The	Python	keywords
are	listed	in	the	table	below.	A	way	of	knowing	that	a	word	is	a	keyword	is	that	it	will
appear	in	a	different	colour	in	IDLE.

				False						class						finally				is									return
				None							continue			for								lambda					try
				True							def								from							nonlocal			while
				and								del								global					not								with
				as									elif							if									or									yield
				assert					else							import					pass
				break						except					in									raise

In	later	sections,	we	will	see	that	it	is	important	to	choose	a	good	name	for	variables
that	accurately	shows	what	the	value	is	meant	to	represent.	There	is	a	convention	as
well	in	Python	of	using	lowercase	letters	in	variable	names	and	underscores	to
separate	words,	which	is	adhered	to	in	these	notes.	There	is	not	anything	stopping	us
ignoring	the	points	in	this	paragraph,	but	it	becomes	an	unnecessary	annoyance	for
other	people	reading	our	code.	Below	are	some	examples	of	the	use	of	variables.

>>>	num1	=	2
>>>	num1
2
>>>	12**num1
144
>>>	num2
Traceback	(most	recent	call	last):
		File	"<stdin>",	line	1,	in	<module>
NameError:	name	'num2'	is	not	defined
>>>	num3	=	num1**2
>>>	num3
4

The	first	example	above	shows	an	assignment	–	the	variable	num1	is	assigned	the
value	2.	The	semantics	of	the	assignment	statement	is:	evaluate	(i.e.	work	out	the
value	of)	the	right	hand	expression	and	associate	the	variable	on	the	left	hand	side	of
the	statement	with	that	value.	The	left	hand	side	of	an	assignment	statement	must	be
a	variable	(at	least	for	now	–	later	we	will	see	other	possibilities).	If	the	variable
already	has	a	value,	that	value	is	overwritten	by	the	value	on	the	right	hand	side	of
the	statement.	Note	that	the	assignment	statement	(when	evaluated)	has	no	value	–
the	interpreter	does	not	display	a	value.	Assignments	are	used	for	their	side-effect	–
the	association	of	a	variable	with	a	value.

The	second	example	shows	what	happens	when	we	ask	the	interpreter	to	evaluate	
num1.	The	result	is	the	value	associated	with	the	variable.	The	third	example	extends
this	by	putting	num1	inside	an	arithmetical	expression.	The	fourth	example	shows	what
happens	when	we	try	to	get	the	value	of	the	variable	num2,	to	which	we	have	not	yet
given	a	value.	This	is	known	as	an	exception	and	will	appear	whenever	something	is
typed	that	Python	cannot	understand	or	evaluate.	The	final	example	shows	how
variables	can	appear	on	both	sides	of	an	assignment	(in	this	case,	a	variable	called	
num3	is	assigned	the	value	worked	out	by	evaluating	num1**2;	the	value	of	num1	is	2,	so	
num1**2	is	4	and	this	is	the	value	given	to	num3.

Strings

To	finish	this	section	we	introduce	the	string	type,	which	is	used	to	represent	text,
and	we	give	some	examples	of	type	conversion	and	printing.

>>>	s	=	"Spam	"
>>>	3	*	s
'Spam	Spam	Spam	'
>>>	2	+	s
Traceback	(most	recent	call	last):
		File	"<stdin>",	line	1,	in	
TypeError:	unsupported	operand	type(s)	for	+:	'int'	and	'str'
>>>	type('')
<class	'str'>
>>>	int("42")
42
>>>	str(42)
'42'
>>>	print(s	+	42)
Traceback	(most	recent	call	last):
		File	"<stdin>",	line	1,	in	
TypeError:	cannot	concatenate	'str'	and	'int'	objects
>>>	print(s	+	str(42))
Spam	42

The	syntax	for	strings	is	a	double	or	single	quote,	followed	by	a	sequence	of
characters,	followed	by	a	matching	double	or	single	quote.	Notice	how	the	space
character	is	part	of	the	string	assigned	in	the	variable	s,	as	it	is	contained	within	the
double	quotes.	The	string	s,	therefore,	is	five	characters	in	length.	Notice	carefully
how	this	affects	the	statements	executed	after	it.

As	the	second	example	shows,	the	multiplication	operator	is	overloaded	and
generates	a	string	that	is	the	number	copies	of	the	original	string.

Type	conversion	is	used	to	change	between	a	string	representing	a	number	and	the
number	itself.

The	built-in	print	function	takes	a	string	argument	and	displays	the	result	to	the	user.
Note,	that	in	this	example,	str	converts	42	into	a	string	and	then	the	addition	operator
concatenates	(i.e.	joins)	the	two	strings	together	and	the	result	is	displayed	to	the

user	–	another	example	of	overloading.

