
Useful	stuff,	string,	no	trouble	there

Data	Structures
Sequences
A	sequence	can	be	thought	of	as	an	ordered	collection	of	data	–	i.e.	it	has	a	0th

element,	a	first	element,	a	second	element	and	so	on.

Note	that	Python,	and	many	other	programming	languages,	start	counting
from	0	rather	than	1.

A	typical	operation	on	any	kind	of	a	sequence	is	to	be	able	to	access	the	ith	element.
Another	operation	is	to	determine	how	many	elements	there	are	in	the	sequence.	This
also	leads	to	the	ability	to	walk	through	the	sequence	from	start	to	end.	This	is	known
as	iterating	through	the	sequence.	All	sequence-based	objects	that	have	this
capability	are	known	as	iterables.	A	string	can	be	considered	as	a	specialisation	of	a
sequence	as	it	represents	a	series	of	ordered	characters.	We	will	use	strings	as	our
first	example	of	using	ADTs.

Strings
As	we	have	seen	before	a	string	can	be	made	using	the	quotation	marks.	Python
interprets	anything	held	within	a	pair	of	“”	to	be	a	string.	This	can	be	thought	of	as
the	constructor	of	a	string.

Because	strings	are	specialisations	of	sequences,	then	we	expect	to	be	able	to	get	the
ith	character	of	a	string	and	find	out	how	long	a	string	is.	To	be	able	to	access	the
characters	in	a	string	it	is	possible	to	do	what	is	called	indexing.	This	is	done	using	[	
]	notation	–	this	is	the	accessor.	To	be	able	to	find	the	length	of	a	string	we	have	the	
len	function.

Note	that	there	are	other	operations	we	want	to	perform	on	strings	that	may	not
make	sense	for	other	specialisations	of	sequences.

Here	are	some	examples	of	indexing	and	finding	the	of	length	strings	in	action:

>>>	s	=	"spam"
>>>	len(s)
4
>>>	s[0]
's'
>>>	s[3]
'm'
>>>	s[4]
Traceback	(most	recent	call	last):
		File	"<pyshell#32>",	line	1,	in	<module>
				s[4]
IndexError:	string	index	out	of	range
>>>	s[-1]
'm'
>>>	s[-2]
'a'
>>>	i	=	0
>>>	while	i	<	len(s)	:
								print(s[i])



								i	+=	1

s
p
a
m

Note	the	'string	index	out	of	range'	error	in	the	fourth	example	–	there	is	no	fourth
element	as	Python	starts	counting	at	0.	Also	notice	that	negative	numbers	can	be
used	in	indexing.	The	use	of	negative	numbers	starts	the	indexing	at	the	end	of	the
string.	So	-1	refers	to	the	last	element	in	the	string,	-2	refers	to	the	second	last,	and
so	on.	In	the	last	example	we	use	a	while	loop	to	iterate	over	and	print	every
character	in	the	string.	Remember	i	+=	1	is	the	same	as	i	=	i	+	1.	In	Python,	there	is
no	separate	‘character	type’.	Characters	in	Python	are	represented	as	strings	of
length	1.	We	will	use	the	term	‘character’	to	mean	a	string	of	length	1.	Strings	are
immutable	sequences	–	i.e.	it	is	not	possible	to	change	the	data	in	a	string.	We	will
cover	mutable	and	immutable	objects	and	sequences	in	the	following	weeks’	notes.

len	Syntax

len(sequence)

Semantics

Returns	the	length	of	(number	of	objects	in)	the	sequence.

For
In	the	example	above,	a	while	loop	was	used	to	iterate	over	the	characters	of	a	string.
Iterating	over	the	elements	of	a	sequence	is	such	a	common	thing	to	do	that	Python
has	a	special	construct	for	this	purpose	–	the	for	loop.	Instead	of	using	the	while	loop
as	we	did	earlier	we	could	use	a	for	loop	instead,	as	a	string	is	an	iterable	object.

>>>	s	=	"spam"
>>>	for	i	in	s	:
								print(i)

s
p
a
m

Syntax

for	var	in	sequence	:
				body



where	var	is	a	variable	and	sequence	is	a	sequence.

Semantics

Iterate	over	sequence	assigning	var	in	turn	to	each	element	of	the	sequence.
For	each	element,	execute	body.	The	body	typically	contains	occurrences	of	var.
The	body	must	follow	the	indentation	rules	of	Python	that	we	have	seen	before.

As	a	simple	example	of	the	use	of	a	for	loop	we	now	write	a	function	to	determine	if	a
given	character	is	in	a	string.	Here	is	the	definition:

def	is_in(char,	string)	:
				"""Return	True	iff	'char'	is	in	'string'.

				Parameters:
								char	(string):	The	character	being	searched	for.
								string	(string):	The	string	being	searched.

				Return:
								bool:	True	if	'char'	is	in	'string'.	False	otherwise.
				"""
				for	c	in	string	:
								if	c	==	char	:
												return	True
				return	False

Here	is	an	example	of	is_in:

>>>	spam	=	"spam"
>>>	is_in("s",	spam)
True
>>>	is_in("d",	spam)
False

The	for	loop	iterates	over	the	characters	in	the	string,	comparing	each	in	turn	with
the	supplied	character.	If	a	match	is	found,	True	is	returned.	If	we	iterate	through	all
the	elements	without	finding	a	match,	then	the	for	loop	terminates	and	the	following
command	is	executed	–	returning	False.	Determining	if	a	particular	item	is	an	element
of	a	sequence	is	a	common	operation,	and	so	Python	has	a	built-in	operator	in	that
does	the	job	for	us	–	so	we	don’t	need	the	previous	function.	Actually,	for	strings,	in
does	more	than	the	previous	function	as	we	can	see	in	the	following	examples.

>>>	's'	in	'spam'
True
>>>	'x'	in	'spam'
False
>>>	'sp'	in	'spam'
True
>>>	'sa'	in	'spam'
False
>>>	'pa'	in	'spam'
True



Note	how	the	in	keyword	is	used	in	for	loops	as	well	as	boolean	tests.	It’s	important
to	be	aware	of	both	uses	of	in	and	how	to	use	it	in	both	cases.

Slice	It	Up
Earlier	we	saw	how	we	can	access	the	ith	element	using	square	brackets.	We	can	do
more!	We	can	also	use	the	square	brackets	to	do	slicing	–	i.e.	extracting
subsequences.	Here	are	some	examples.

>>>	s	=	'spam'
>>>	s[1:2]
'p'
>>>	s[1:3]
'pa'
>>>	s[:3]
'spa'
>>>	s[1:]
'pam'
>>>	s[:-2]
'sp'
>>>	s[-3:]
'pam'
>>>	s[:]
'spam'

The	idea	is	to	supply	two	indices	separated	by	a	colon.	So	when	we	write	s[n:m],	we
mean	the	substring	from	the	nth	index	up	to,	but	not	including,	the	mth	index.	If	the
first	index	is	missing	we	get	the	slice	starting	at	the	beginning	of	the	string	or
sequence.	If	the	second	index	is	missing	we	get	the	slice	ending	at	the	last	element.
In	the	last	case	we	actually	generate	a	copy	of	the	original	string.	We	can	also	write	
s[n:m:k].	This	means	the	substring	from	n	to	m	in	steps	of	k.	Here	are	some	examples.

>>>	sp	=	'Lovely	Spam'
>>>	sp[1:10:2]
'oeySa'
>>>	sp[0:8:3]
'Le	'
>>>	sp[-10:2:2]
'o'
>>>	sp[-10:10:3]
'olS'
>>>	sp[:7:4]
'Ll'
>>>	sp[2::3]
'vyp'
>>>	sp[::3]
'Le	a'
>>>	sp[10:1:-2]
'mp	lv'
>>>	sp[-3:2:-3]
'py'
>>>	sp[::-1]
'mapS	ylevoL'

The	first	four	examples	show	starting	from	one	index	and	ending	at	another	using	a



step	size.	The	next	three	examples	show	ways	of	starting	at	the	beginning	or	ending
at	the	end	or	both	using	a	step	size.	The	last	three	are	examples	of	using	negative
step	sizes.

Slicing	Syntax

sequence[n:m:k]

Semantics

Returns	the	elements	in	the	sequence	from	n	up	to	but	not	including	m	in	steps
of	size	k.	If	k	is	not	included	then	step	size	defaults	to	1.	To	get	a	backwards
segment	of	the	sequence	then	m	<	n	and	k	must	be	negative.

To	finish	off	this	section	we	look	at	two	programming	problems	involving	lists.	The
first	problem	is,	given	a	character	and	a	string,	find	the	index	of	the	first	occurrence
of	the	character	in	the	string.

def	find(char,	string)	:
				"""Return	the	first	i	such	that	string[i]	==	'char'

				Parameters:
								char	(string):	The	character	being	searched	for.
								string	(string):	The	string	being	searched.

				Return:
								int:	Index	position	of	'char'	in	'string',	
													or	-1	if	'char'	does	not	occur	in	'string'.
				"""
				i	=	0
				length	=	len(string)
				while	i	<	length	:
								if	char	==	string[i]	:
												return	i
								i	+=	1
				return	-1

We	use	a	while	loop	to	iterate	over	the	elements	of	the	string.	Either	we	find	an
occurrence	of	the	character	—	in	which	case	we	immediately	return	that	index,	or	we
get	to	the	end	of	the	string	without	finding	the	character	and	return	-1.	Here	are
some	tests	of	find.

>>>	s	=	"spam"
>>>	find('m',	s)
3
>>>	find('s',	s)
0
>>>	find('x',	s)
-1

Tuples



A	tuple	is	a	comma	separated	list	of	values.	Tuples	are	useful	for	storing	data	that	is
required	to	not	be	modified.	As	tuples	are	immutable,	they	cannot	be	modified,
they	are	useful	for	this	type	of	operation.

Here	are	some	examples	using	tuples.

>>>	type((2,3,4))
<class	'tuple'>
>>>	point	=	(2,3)
>>>	point
(2,	3)
>>>	x,	y	=	point
>>>	print(x,	y)
2	3
>>>	x,	y	=	y,	x
>>>	print(x,	y)
3	2

The	second	example	assigns	a	tuple	to	the	variable	point.	This	tuple	represents	an	x,	y
coordinate,	one	of	the	more	common	uses	of	tuples.	(Formally,	we	say	that	the	name	
point	refers	to	the	tuple	(2,3)	in	memory.)	The	third	is	an	example	of	tuple
unpacking,	also	called	parallel	assignment	—	it	assigns	x	and	y	respectively	the
values	of	the	first	and	second	components	of	the	tuple.	The	last	example	uses	parallel
assignment	to	swap	the	values	of	two	variables.

Tuples	can	also	be	indexed	and	sliced	in	the	same	way	as	strings.	Here	is	an	example.
The	tuple	in	this	example	represents	a	person’s	details.	Using	a	tuple	is	an	easy	way
of	storing	multiple	values	together	to	represent	the	information	of	a	person.

>>>	john	=	("John",	"Cleese",	"Ministry	of	Silly	Walks",	5555421,	"27/10")
>>>	john[2]
'Ministry	of	Silly	Walks'
>>>	john[4]
'27/10'
>>>	john[:2]
('John',	'Cleese')

Multiple	Outputs

Tuples	are	also	useful	for	using	multiple	values,	for	example	in	for	loops	and	return
statements.	It	is	possible	to	rewrite	the	find	function	using	a	for	loop	and	the	enumerate
function.	Calling	enumerate	on	a	sequence	will	create	a	sequence	of	tuples	containing	a
counter	and	the	values	in	the	sequence.	By	default,	the	counter	starts	at	0,	so	it	can
be	used	to	generate	tuples	that	contain	a	value	of	the	sequence	and	the	index	of	that
value.	The	following	is	a	couple	of	examples	using	enumerate.

>>>	s	=	"I	like	Spam"
>>>	for	i,	c	in	enumerate(s)	:
				print(i,	c)

0	I
1		
2	l
3	i
4	k
5	e



6		
7	S
8	p
9	a
10	m
>>>	
>>>	
>>>	for	i,	c	in	enumerate(s,	3)	:
				print('number:',	i,	'character:',	c)

number:	3	character:	I
number:	4	character:		
number:	5	character:	l
number:	6	character:	i
number:	7	character:	k
number:	8	character:	e
number:	9	character:		
number:	10	character:	S
number:	11	character:	p
number:	12	character:	a
number:	13	character:	m

Notice	that	the	for	loop	uses	tuple	unpacking,	by	assigning	the	items	of	the	tuple	to
the	variables	i	and	c.	The	first	example	simply	prints	out	the	index	and	character	as	a
tuple	pair.	The	second	gives	a	second	argument	to	enumerate,	which	is	the	starting
value	for	the	counter.

enumerate	Syntax

Either	of	these	forms	can	be	used:

enumerate(sequence)
enumerate(sequence,	start)

Semantics

Generates	a	sequence	of	(count,	value)	tuples,	with	an	increasing	count	and	the
values	of	the	sequence.	The	count	starts	at	start,	or	at	0	if	start	is	not	given.
More	precisely,	the	following	sequence	is	generated:

enumerate(seq)	=>	(0,	seq[0]),	(1,	seq[1]),	(2,	seq[2]),	...
enumerate(seq,	start)	=>	(start,	seq[0]),	(start+1,	seq[1]),	
																									(start+2,	seq[2]),	...

If	the	counter	starts	from	0,	then	the	count	is	the	same	as	the	index	of	the	value
in	the	sequence.	This	is	the	most	common	use	of	enumerate.

Now	we	can	rewrite	find	as	below:

def	find(char,	string)	:



				"""Return	the	first	i	such	that	string[i]	==	char

				Parameters:
								char	(string):	The	character	being	searched	for.
								string	(string):	The	string	being	searched.

				Return:
								int:	Index	position	of	'char'	in	'string',	
													or	-1	if	'char'	does	not	occur	in	'string'.
				"""
				for	i,	c	in	enumerate(string)	:
								if	c	==	char	:
												return	i
				return	-1

This	function	now	goes	through	each	character	in	the	string	using	a	for	loop	with
enumerate.	The	body	of	the	for	loop	is	to	check	if	the	current	character,	c,	is	the	same
as	char.	If	it	is	then	the	current	index	i	is	returned.	Otherwise	the	for	loop	moves	onto
the	next	character	in	the	string.	If	the	for	loop	ends	then	-1	is	returned.	Performing
test	cases	on	find.py	we	can	see	that	it	has	the	same	functionality	as	before.

>>>	s	=	"spam"
>>>	find('m',	s)
3
>>>	find('s',	s)
0
>>>	find('x',	s)
-1

Returning	a	Tuple

Now	we	are	going	to	write	our	own	function	that	returns	multiple	outputs.	Our
function	is	going	to	take	a	character	and	a	string	and	split	the	string	in	two,	at	the
first	occurrence	of	the	character.	In	this	case	we	want	to	write	a	function	that	will
return	three	strings	-	the	string	up	to	(but	not	including)	the	character;	the	character;
and	the	string	after	the	character.

Our	programming	problem	can	be	solved	by	using	find	in	combination	with	slicing.

def	partition(char,	string)	:
				"""Return	'string'	split	at	'char'.

				The	returned	result	is	a	tuple	consisting	of	three	strings	that
				partition	'string'	at	'char'	-	i.e.	the	substring	before	the	first	occurrence
				of	'char',	'char',	and	the	substring	after	the	first	occurrence	of	'char'.
				If	'char'	does	not	occur	in	'string'	then	the	first	component	returned
				is	the	entire	'string'	and	the	last	two	components	are	empty	strings.

				Parameters:
								char	(string):	The	character	used	to	partition	string.
								string	(string):	The	string	being	partitioned.

				Return:
								tuple<tr,	str,	str>:	sub-string	before	char,	char,	sub-string	after	char;
																													or	'string',	"",	"".
				"""
				index	=	find(char,	string)
				if	index	==	-1	:
								return	string,	'',	''



				else	:
								return	string[:index],	char,	string[index+1:]

Here	are	some	tests	of	partition.

>>>	spam	=	'spam'
>>>	partition('s',	spam)
('',	's',	'pam')
>>>	partition('p',	spam)
('s',	'p',	'am')
>>>	partition('m',	spam)
('spa',	'm',	'')
>>>	partition('x',	spam)
('spam',	'',	'')

In	next	week’s	notes	we	will	see	that	the	find	and	partition	functions,	like	the	is_in
function	are	already	part	of	Python	as	part	of	the	string	ADT	interface.


