
What’s	all	this	then,	Amen!

–	Monty	Python

Introduction	to	Software	Engineering	and
Programming
What	is	Software	Engineering?

Software	Engineering	is	the	application	of	a	systematic,	disciplined,	quantifiable
approach	to	the	development,	operation,	and	maintenance	of	software	(IEEE	std
610.12-1990).	A	software	engineer	must	have	a	good	understanding	of	tools	and
techniques	for	requirements	gathering,	specification,	design,	implementation,	testing
and	maintenance.

These	days,	software	systems	are	often	very	large	and	many	contain	key	safety	or
mission-critical	components.	The	complexity	of	modern	software	systems	require	the
application	of	good	software	engineering	principles.	Indeed,	many	agencies	mandate
the	use	of	particular	tools	and	techniques	to	achieve	very	high	quality	and	reliable
software.

This	course	introduces	some	of	the	key	principles	of	software	engineering	and	gives
you	the	chance	to	put	them	into	practice	by	using	the	programming	language	Python.
While	you’ll	learn	lots	of	Python	in	this	course,	it	is	equally	important	that	you	learn
some	common	programming	principles	and	techniques	so	that	learning	the	next
language	is	not	as	daunting.

What	is	Python?

Python	is	a	powerful,	yet	simple	to	use	high-level	programming	language.	Python	was
designed	and	written	by	Guido	van	Rossum	and	named	in	honour	of	Monty	Python’s
Flying	Circus.	The	idea	being	that	programming	in	Python	should	be	fun!	The	quotes
in	these	notes	all	come	from	Monty	Python	and	it	has	become	somewhat	of	a	tradition
to	reference	Monty	Python	when	writing	Python	tutorials.

What	is	Software?

Software	(a	computer	program)	is	a	set	of	instructions	that	tell	the	computer
(hardware)	what	to	do.	All	computer	programs	are	written	in	some	kind	of
programming	language,	which	allows	us	to	precisely	tell	the	computer	what	we
want	to	do	with	it.

Features	of	a	Programming	Language

There	are	many	programming	languages	but	they	all	have	some	things	in	common.

Syntax	and	Semantics

Firstly,	each	program	language	has	a	well	defined	syntax.	The	syntax	of	a	language
describes	the	well-formed	‘sentences’	of	the	language.	Syntax	tells	us	how	to	write
the	instructions:	what	is	the	order	of	the	words,	how	our	program	must	be	structured,
etc.	It’s	a	bit	like	grammar	and	sentence	rules	when	we	write	in	English.

When	we	write	a	sentence	in	English,	we	may	mess	up	the	grammar	and	still	be
understood	by	the	reader	(or,	the	reader	may	ask	us	what	we	mean).	On	the	other
hand,	if	we	mess	up	the	syntax	when	we	write	a	computer	program,	the	computer	is



not	as	forgiving	-	it	will	usually	respond	by	throwing	up	an	error	message	and	exit.	So
it	is	fundamentally	important	that	we	understand	the	syntax	of	a	programming
language.

Secondly,	each	self-contained	piece	of	valid	syntax	has	well	defined	semantics
(meaning).	For	programming	languages,	it	is	vitally	important	that	there	are	no
ambiguities	-	i.e.	a	valid	piece	of	syntax	has	only	one	meaning.

High-	and	Low-	Level	Languages

Programming	languages	are	typically	divided	into	high-level	and	low-level
languages.

Low-level	languages	(like	assembler)	are	‘close’	to	the	hardware	in	the	sense	that
little	translation	is	required	to	execute	programs	on	the	hardware.	Programs	written
in	such	languages	are	very	verbose;	making	it	difficult	for	humans	to	write	and
equally	importantly,	difficult	to	read	and	understand!

On	the	other	hand,	high-level	languages	are	much	more	human-friendly.	The	code	is
more	compact	and	easier	to	understand.	The	downside	is	that	more	translation	is
required	in	order	to	execute	the	program.

Compiled	and	Interpreted	Languages

Before	we	can	run	our	program,	we	need	to	type	out	the	list	of	instructions	(called	our
source	code	or	just	code)	that	outlines	what	our	program	does	when	we	want	to	run
it	later.	So	how	does	our	source	code	then	turn	into	a	running	program?	This	depends
on	whether	the	programming	language	we	have	written	the	source	code	in	is	either	a
Compiled	or	Interpreted	language.

Compiled	languages	come	with	a	special	program	called	a	compiler	which	takes
source	code	written	by	a	user	and	translates	it	into	object	code.	Object	code	is	a
sequence	of	very	low-level	instructions	that	are	executed	when	the	program	runs.
Once	a	user’s	program	has	been	compiled,	it	can	be	run	repeatedly,	simply	by
executing	the	object	code.	Examples	of	compiled	languages	include	Java,	Visual	Basic
and	C.

Interpreted	languages	come	with	a	special	program	called	an	interpreter	which
takes	source	code	written	by	the	user,	determines	the	semantics	of	the	source	code
(interprets	it)	and	executes	the	semantics.	This	is	typically	done	in	a	step-by-step
fashion,	repeatedly	taking	the	next	semantic	unit	and	executing	it.	Examples	of
interpreted	languages	include	Python,	Ruby	and	Lisp.

Both	compilers	and	interpreters	need	to	understand	the	semantics	of	the	language	-
the	compiler	uses	the	semantics	for	the	translation	to	object	code;	the	interpreter
uses	the	semantics	for	direct	execution.	Consequently,	a	program	in	a	compiled
language	executes	faster	than	the	equivalent	program	in	an	interpreted	language	but
has	the	overhead	of	the	compilation	phase	(i.e.	we	need	to	compile	our	program	first
before	we	can	run	it,	which	can	take	a	while	if	the	program	is	very	big).	If	we	make	a
change	in	our	code	with	a	compiled	language,	we	need	to	recompile	the	entire
program	before	we	can	test	out	our	new	changes.

One	advantage	for	an	interpreted	language	is	the	relatively	quick	turn-around	time
for	program	development.	Individual	components	of	a	large	program	can	be	written,
tested	and	debugged	without	the	overhead	of	compiling	a	complete	program.
Interpreters	also	encourage	experimentation,	particularly	when	starting	out	-	just
enter	an	expression	into	the	interpreter	and	see	what	happens.

Python	is	an	interpreted	language	-	it	has	an	interpreter.	The	python	interpreter	is	a
typical	read-eval-print	loop	interpreter.	In	other	words,	it	repeatedly	reads
expressions	input	by	the	user,	evaluates	the	expressions	and	prints	out	the	result.



Data	Types

Another	important	issue	when	considering	programming	languages	is	the	way	the
language	deals	with	types.	Types	are	used	by	programming	languages	(and	users)	to
distinguish	between	“apples	and	oranges”.	At	the	lowest	level	all	data	stored	in	the
computer	are	simply	sequences	of	1’s	and	0’s.	What	is	the	meaning	of	a	given
sequence	of	1’s	and	0’s?	Does	it	represent	an	“apple”	or	an	“orange”?	In	order	to
determine	the	intended	meaning	of	such	a	sequence,	it	has	a	type	associated	it.	The
type	is	used	to	determine	the	meaning	of	the	1’s	and	0’s	and	to	determine	what
operations	are	valid	for	that	data.	Programming	languages	come	with	built-in	types
such	as	integers	(whole	numbers)	and	strings	(sequences	of	characters).	They	also
allow	users	to	define	their	own	types.

Programming	languages	implement	type	checking	in	order	to	ensure	the	consistency
of	types	in	our	code.	This	stops	us	from	doing	silly	things	like	trying	to	add	a	number
to	a	word,	or	trying	to	store	an	“apple”	in	a	memory	location	which	should	only
contain	an	“orange”.

Programming	languages	are	typically	either	statically	typed	or	dynamically	typed
languages.	When	using	a	statically	typed	language,	checks	for	the	consistency	of
types	are	done	‘up-front’,	typically	by	the	compiler	and	any	inconsistencies	are
reported	to	the	user	as	type	errors	at	compile	time	(i.e.	while	the	compiler	is
compiling	the	program).	When	using	a	dynamically	typed	language,	checks	for	type
errors	are	carried	out	at	run	time	(i.e.	while	the	user	is	running	the	program).

There	is	a	connection	between	whether	the	language	is	compiled	or	interpreted	and
whether	the	language	is	statically	or	dynamically	typed;	many	statically	typed
languages	are	compiled,	and	many	dynamically	typed	languages	are	interpreted.
Statically	typed	languages	are	usually	preferred	for	large-scale	development	because
there	is	better	control	over	one	source	of	‘bugs’:	type	errors.	(But	remember,	just
because	the	program	has	no	type	errors	doesn’t	make	it	correct!	This	is	just	one	kind
of	bug	that	our	program	must	not	have	to	run	properly.)	On	the	other	hand,
dynamically	typed	languages	tend	to	provide	a	gentler	introduction	to	types	and
programs	tend	to	be	simpler.	Python	is	dynamically	typed.

Notes	Formatting

In	the	remainder	of	the	notes	we	will	use	different	boxes	to	indicate	different	parts	of
the	content.	These	may	appear	in	the	readings	or	separately	on	Blackboard.	Below
are	examples.

Information

Detailed	information	will	appear	in	boxes	similar	to	this	one,	such	as	the	syntax
and	semantics	of	Python	code	presented	in	the	notes,	and	summaries	of	the
content.	Understanding	the	concepts	presented	here	will	assist	you	in	writing
programs.

Aside

Further	information	will	appear	in	these	boxes.	These	asides	go	beyond	the
course	content,	but	you	may	find	them	interesting.	You	can	safely	ignore	them,
but	they	will	often	demonstrate	several	powerful	features	of	Python,	and	they
may	be	a	useful	challenge	for	some	students.



Extra	examples

In	the	remainder	of	the	notes	we	sometimes	give	more	detailed	examples.
These	extra	examples	are	delimited	from	the	main	text	by	these	boxes.	You	may
find	them	useful.

Visualizations

These	boxes	contain	visualizations	of	Python	code.	You	might	find	that	these
visualizations	aid	in	your	understanding	of	how	Python	works.	You	can	visualize
your	own	code	by	going	to	the	Python	Tutor	Visualisation	Tool	at
http://pythontutor.com/visualize.html.	The	home	page	for	Python	Tutor	is	at
http://www.pythontutor.com/.

http://pythontutor.com/visualize.html
http://www.pythontutor.com/

