
Class	Design
Student	Modelling
In	this	tutorial,	we	will	write	a	simple	program	which	keeps	track	of	university
students	and	the	courses	they	take.	The	code	below	provides	a	starting	point.

class	Student(object)	:
				"""Simple	representation	of	a	university	student."""
				def	__init__(self,	name)	:
								"""Create	a	student	with	a	name.

								Parameters:
												name	(str):	The	student's	name.
								"""
								self._name	=	name

				def	get_name(self)	:
								"""(str)	Returns	the	name	of	the	student."""
								return	self._name

Modify	this	class	so	that	it	also	stores	the	student	number,	and	degree	program	(as	a
string).	Add	methods	get_student_num	and	get_degree	which	retrieve	this	information,
and	a	method	set_degree	which	changes	the	student’s	degree.	For	example,	the
resulting	class	might	behave	like	this:

>>>	s	=	Student('Michael	Palin',	43215678,	'BInfTech')
>>>	s.get_name()
'Michael	Palin'
>>>	s.get_student_num()
43215678
>>>	s.get_degree()
'BInfTech'
>>>	s.set_degree('BE')
>>>	s.get_degree()
'BE'

Why	might	it	be	inappropriate	to	add	a	set_student_num	method	which	modifies	the
student	number;	similar	to	set_degree?

Next,	add	the	following	methods.	For	our	purposes,	we	will	assume	that	the	student’s
name	is	composed	of	two	names	(first	name	and	last	name)	separated	by	a	space.

get_first_name,	which	returns	the	student’s	first	name	(e.g.	'Michael')
get_last_name,	which	returns	the	student’s	surname	(e.g.	'Palin')
get_email,	which	returns	the	student’s	email	address	derived	from	their	name
(e.g.	'michael.palin@uq.net.au').	For	this	exercise,	it	is	safe	to	assume	the
student’s	email	is	always	in	the	format	firstname.lastname@uq.net.au.
__str__,	which	returns	a	string	with	the	student’s	name,	email,	student	number,
and	degree,	in	a	format	such	as	‘Michael	Palin	(michael.palin@uq.net.au,	43215678,	
BE)’
__repr__,	which	returns	a	string	which	looks	like	the	Python	code	to	create	the
object;	for	example,	"Student('Michael	Palin',	43215678,	'BE')"



Validity	Checking
It	is	important	that	each	student	in	the	University	has	a	different	student	number.	To
ensure	this,	we	can	take	a	list	of	Student	objects,	and	check	that	no	two	students	have
the	same	student	number.

Write	a	function	check_students	which	takes	a	list	of	Student	objects,	and	returns	True	if
they	all	have	different	student	numbers,	and	False	if	there	are	student	numbers	that
have	been	repeated.

Make	sure	you	write	check_students	as	a	function,	not	a	method	of	the	Student	class!
For	example:

>>>	students1	=	[Student('Alice	A',	1,	'BE'),
																	Student('Bob	B',	2,	'BA'),
																	Student('Carol	C',	4,	'BA')]
>>>	check_students(students1)
True
>>>	students2	=	[Student('Alice	A',	1,	'BE'),
																	Student('Bob	B',	2,	'BA'),
																	Student('Carol	C',	4,	'BA'),
																	Student('Dan	D',	2,	'BInfTech')]
>>>	check_students(students2)
False

In	the	first	example,	all	students	have	different	student	numbers	(1,	2,	4).	In	the
second	example,	Bob	and	Dan	have	the	same	student	number	(2).

Adding	Courses
Write	a	class	which	represents	a	university	course.	The	class	should	have	getter
methods	for	the	course	code	(e.g.	'CSSE1001')	and	the	course	name	(e.g.	'Introduction	
to	Software	Engineering').

Add	functionality	to	the	Student	class	so	that	each	instance	is	capable	of	recording	the
courses	for	which	a	student	has	obtained	a	grade.	You	should	write	the	following
methods	in	the	Student	class:

add_grade(course,	grade),	which	sets	the	student’s	grade	for	a	given	course.	If	the
student	already	has	a	grade	for	that	course,	then	replace	the	old	grade	with	the
new	one.
gpa(),	which	returns	the	student’s	GPA	(the	average	of	all	their	grades).	(You	may
assume	that	each	course	carries	the	same	weight.)	For	example:

>>>	s	=	Student('Michael	Palin',	43215678,	'BE')
>>>	csse1001	=	Course('CSSE1001',	'Intro	to	Software	Engineering')
>>>	deco1800	=	Course('DECO1800',	'Design	Computing	Studio	I')
>>>	s.add_grade(csse1001,	4)
>>>	s.gpa()
4.0
>>>	s.add_grade(deco1800,	5)
>>>	s.gpa()
4.5
>>>	s.add_grade(csse1001,	6)	#	Overwrite	the	old	grade
>>>	s.gpa()
5.5



Challenge:	Extending	Further

It	is	clear	that	our	model	of	students	and	courses	is	still	incomplete.	Consider
further	extensions	that	can	be	made,	and	implement	them.	Possible
improvements	include:

storing	courses	a	student	is	currently	taking	within	the	1	class,
accessing	a	list	of	students	enrolled	in	a	course,
storing	the	semester	in	which	students	took	a	course,	or
allowing	for	courses	with	different	unit	weightings	in	GPA	calculation.	As
part	of	this	process,	you	will	need	to	consider	which	classes	to	alter,	and
which	methods	to	add.


