
Complexity
Student	Evaluation	of	Tutors
UQ	and	ITEE	takes	pride	in	the	quality	of	its	teaching	staff	and	encourages	you	to
provide	constructive	feedback	of	the	course	tutors	through	the	SETutor	survey
process.

Take	the	first	five	minutes	of	this	tutorial	to	complete	the	survey	for	the	tutor(s)	with
whom	you	have	had	the	most	contact	this	semester.	The	survey	links	are	available	on
BlackBoard,	in	the	Administrative	Items	folder	under	Learning	Resources.

Uniqify
For	this	task,	we	want	to	write	a	function	which	removes	duplicates	from	a	list,
analyse	the	computational	complexity	of	the	function,	and	then	improve	it.

1.	 Write	a	function	uniqify(items)	which	takes	a	list,	and	returns	a	list	containing
each	element	of	items	without	any	duplicates	of	the	elements	in	items.	For
example:

>>>	uniqify([8,	3,	5,	8,	9,	4,	5,	2,	3,	5])
[8,	3,	5,	9,	4,	2]

Now,	suppose	that	items	has	length	n.	Approximate	the	number	of	‘steps’	of
computation	the	function	requires	to	finish	(in	terms	of	n).	Express	your	final
answer	as	a	computational	complexity	class	(constant	/	logarithmic	/	linear	/
quadratic	/	exponential).

2.	 Discuss	how	the	complexity	could	be	improved	if	the	items	list	was	sorted	to
begin	with.	Write	a	function	uniqify2	which	removes	duplicates	from	a	list,	by
first	sorting	the	list.

Note:	the	order	of	elements	in	the	output	list	is	unimportant,	as	long	as	each
appears	only	once.

Hint:	sorted(items)	will	give	a	copy	of	items	in	sorted	order,	without	modifying	the
original	list.	It	runs	in	O(nlog⁡(n))	time.

>>>	uniqify2([8,	3,	5,	8,	9,	4,	5,	2,	3,	5])
[2,	3,	4,	5,	8,	9]

Then,	repeat	the	same	analysis	as	above	to	determine	the	computational
complexity	of	uniqify2,	in	terms	of	the	length	of	the	input	list	n.

3.	 In	this	course,	we	have	already	encountered	a	data	type	which	contains	a	notion
of	uniqueness.	Discuss	how	to	use	this	to	write	a	function	uniqify3	which	does	the
same	task,	with	a	better	time	complexity.	Then,	write	such	a	function,	and
determine	its	complexity.

4.	 Is	it	possible	to	solve	this	task	with	a	faster	time	complexity	than	in	uniqify3?

Justify	your	answer.

The	following	code	snippet	will	run	the	three	uniqify	functions	multiple	times	on	a
large	input,	and	measure	the	running	time.	Copy	and	paste	the	code	into	the	source
file	containing	the	three	function	definitions,	and	run	it.	It	may	take	a	few	minutes	to
finish,	so	move	on	to	the	next	task	while	you	are	waiting.

import	random
import	timeit

for	func,	number	in	[('uniqify3',	1000),	('uniqify2',	1000),	('uniqify',	1)]:
				print('\n'	+	func	+	':')
				old	=	None
				for	N	in	[1000,	2000,	4000,	8000,	16000,	32000,	64000]	:
								time	=	min(timeit.repeat(func	+	'(range(N))',
																				'from	__main__	import	N,'	+	func,
																				number=number))	*	1000	/	number
								print	('n	=	{:>5}:	{:.4f}	ms'.format(N,	time)	+
															(''	if	old	is	None	else	'	=	{:.2f}	times	slower'.format(time/old)))
								old	=	time

Aside:	Sets

If	the	data	in	our	collection	must	be	unique,	then	lists	are	not	the	most	optimal
type	to	use.	Python	offers	a	data	type	called	a	set,	where	every	element	is
unique.	Sets	behave	similarly	to	dictionaries,	but	without	having	a	value
associated	with	each	unique	element.

Additional	Examples
The	next	section	of	the	tutorial	contains	two	functions.	For	each	function,	using
similar	methods	to	the	uniqify	section,	analyse	the	time	complexity	of	the	function	by
estimating	the	number	of	‘steps’	in	the	code.	Note	that	this	code	is	not	necessarily	the
optimal	way	to	provide	the	functionality	but	is	instead	provided	as	practice	for
analysing	complexity.

1.	 The	is_n_digits	function	takes	two	integers,	x	and	n,	and	returns	True	if	x	is	an	n-
digit	number.	Analyse	the	time	complexity	of	the	is_n_digits	function	in	terms	of
the	size	of	the	n	parameter:

def	is_n_digits(x,	n):
				for	guess	in	range(10**(n-1),	10**n):
								if	guess	==	x:
												return	True
				return	False

2.	 The	search	function	takes	a	list	of	numbers,	sorted	in	ascending	order,	and	a
number,	x,	and	returns	True	if	x	is	an	element	of	numbers	and	False	otherwise.
Analyse	the	time	complexity	of	the	search	function	in	terms	of	the	length	of	the
list,	numbers:

https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset

def	search(numbers,	x):
				if	numbers	==	[]:
								return	False

				if	len(numbers)	==	1:
								return	numbers[0]	==	x

				mid	=	len(numbers)	//	2
				if	x	<	numbers[mid]:
								return	search(numbers[:mid],	x)
				else:
								return	search(numbers[mid:],	x)

Past	Exam	Practice
Attempt	some	of	the	past	exam	questions,	accessible	from	the	UQ	Library	website.	If
there	is	time,	the	tutors	will	suggest	questions	to	attempt.	The	tutorial	in	week	13	will
go	over	some	questions	and	solutions	for	a	past	exam.

