
Data	Structures
DNA	Manipulation
In	molecular	biology,	a	DNA	sequence	can	be	represented	by	a	string	made	up	of	the
characters	A,	T,	G	and	C.	The	length	of	a	DNA	sequence	must	also	be	a	multiple	of
three.

1.	 Write	a	function	is_dna(string)	which	returns	True	if	the	input	is	a	valid	DNA
sequence	and	False	otherwise.

	>>>	is_dna("AATGAC")
	True
	>>>	is_dna("ACtACT")
	False
	>>>	is_dna("AATC")
	False

2.	 The	reverse	complement	of	a	DNA	sequence	is	computed	by	interchanging	A	with
T,	and	G	with	C,	and	reversing	the	string.	For	example,	the	reverse	complement	of
AATGAC	is	GTCATT.	Write	a	function	reverse_complement(dna)	which	returns	the	reverse
complement	of	the	sequence	dna.	If	the	sequence	is	invalid,	return	None.

	>>>	reverse_complement("AATGAC")
	'GTCATT'
	>>>	reverse_complement("GATTACAAA")
	'TTTGTAATC'
	>>>	print(reverse_complement("GAGA"))
	None

3.	 A	DNA	sequence	is	divided	up	into	blocks	of	three	letters,	called	codons.	For
example,	the	sequence	GATTACAAA	contains	three	codons:	GAT,	TAC	and	AAA.	Write	a
function	print_codons(dna)	which	one-by-one	prints	each	of	the	codons	of	the
sequence	dna.	If	the	sequence	is	invalid,	do	nothing.

	>>>	print_codons("GATTACAAA")
	GAT
	TAC
	AAA
	>>>	print_codons("AATGAC")
	AAT
	GAC
	>>>	print_codons("GAGA")
	>>>

Challenge:	Returning	Codons

In	general,	a	function	that	performs	a	logical	task,	such	as	dividing	a	DNA



sequence	into	codons,	should	not	perform	output	from	within	the	function.	It	is
better	to	return	the	result	and	let	the	calling	code	determine	what	to	do	with
the	result.	This	makes	it	easier	to	reuse	the	function	in	other	parts	of	a
program.	It	also	means	that	the	code	for	outputting	data	is	not	spread
throughout	the	logic	of	the	program.

Write	a	generate_codons(dna)	function	that	returns	a	list	containing	each	of	the
codons	of	the	sequence	dna.	If	the	sequence	is	invalid,	return	None.	Modify	the	
print_codons(codons)	function	so	that	the	parameter	is	now	a	list	containing	the
codons.	Print	each	codon	found	in	the	list	on	a	separate	line,	like	in	the	previous
implementation	of	print_codons(dna).	For	the	purposes	of	this	exercise,	you	may
assume	that	the	list	contains	a	valid	set	of	codons.

<class	'NoneType'>

Aside:	Dealing	with	Bad	Input

If	we	encounter	a	string	which	is	not	an	invalid	DNA	sequence,	the	optimal
situation	would	be	not	to	‘ignore’	the	invalid	data	by	doing	nothing,	instead	we
should	cause	an	error	to	occur,	by	raising	an	exception:

...
if	...	:
				raise	ValueError("Invalid	DNA	sequence")
...

We	will	cover	raising	and	handling	exceptions	later	in	the	course.

Number	Extraction
Data	mining	is	the	process	of	discovering	and	analysing	information	from	raw
datasets.	Often,	most	of	the	data	is	not	relevant,	and	so	the	first	task	in	data	mining	is
to	extract	only	the	useful	information.	In	this	task,	we	are	given	a	string	that	contains
numbers,	and	we	want	to	extract	the	first	integer	out	of	the	string.

Write	a	function	get_number(string)	which	returns	the	first	positive	integer	in	the
string,	or	None	if	there	are	no	integers	in	the	string.	You	may	find	it	useful	to	use	the	
str.isdigit	method.

>>>	generate_codons("GATTACAAA")
['GAT',	'TAC',	'AAA']
>>>	result	=	generate_codons("GA")
>>>	type(result)

>>>	print_codons(generate_codons("GATTACAAA"))
GAT
TAC
AAA
>>>	



>>>	get_number("zbagy22.17clguba19")
22
>>>	get_number("ubyl	014tenvy,1975	ncevy9gu")
14
>>>	print(get_number("sylvatpvephf"))
None

Challenge:	Negative	Numbers

Modify	this	function	to	handle	negative	integers.

>>>	get_number("zl-39u0irepensg")
-39
>>>	get_number("vf-shyy23-4bs")
23
>>>	get_number("33yf-")
33


