
Debugging	and	Dictionaries
Bug	Swatting
Your	tutors	have	tried	to	write	a	program	that	finds	the	first	n	prime	numbers,	for	an
integer	n.	Unfortunately,	we’re	all	noobs.	Our	code	has	several	bugs	in	it	and	we	need
some	help.	The	code	is	shown	below;	your	task	is	to	find	and	fix	the	errors.	This	code
can	also	be	downloaded	as	week05_primes.py.

def	is_prime(n)	:
				"""Returns	True	iff	'n'	is	prime.

				Parameters:
								n	(int):	Integer	value	to	be	tested	to	see	if	it	is	prime.

				Return:
								bool:	True	if	'n'	is	prime.	False	otherwise.

				Preconditions:
								n	>	1
				"""
				for	i	in	range(2,	n)	:
								#	Check	if	i	is	a	factor	of	n
								if	n	%	i	==	0	:
												return	False
								else	:
												return	True

def	get_primes(n)	:
				"""Return	a	list	of	the	first	n	primes.

				Parameters:
								n	(int):	Number	of	prime	numbers	to	find.

				Return:
								list[int]:	The	first	‘n’	prime	numbers.

				Preconditions:
								n	>	0
				"""
				primes	=	''
				i	=	2
				while	len(primes)	<	n	:
								if	is_prime(i)	:
												primes.append(i)
												i	+=	1

n	=	int(input("How	many	primes?	"))
print("The	first"	+	n	+	"primes	are:",	primes)

The	following	example	shows	how	the	program	should	work:

How	many	primes?	7
The	first	7	primes	are:	[2,	3,	5,	7,	11,	13,	17]



Scrabble	Scoring
In	the	game	Scrabble,	points	are	scored	by	summing	the	value	of	the	letters	in	a
word.	Different	letters	are	assigned	different	values,	based	on	how	difficult	it	is	to	use
the	letter	in	a	word.	Below	is	a	table	that	maps	each	letter	to	its	corresponding	value.	

SCRABBLE_VALUES	=	(
				('a',	1),	('b',	3),	('c',	3),	('d',	2),	('e',	1),
				('f',	4),	('g',	2),	('h',	4),	('i',	1),	('j',	8),
				('k',	5),	('l',	1),	('m',	3),	('n',	1),	('o',	1),
				('p',	3),	('q',	10),	('r',	1),	('s',	1),	('t',	1),
				('u',	1),	('v',	4),	('w',	4),	('x',	8),	('y',	4),
				('z',	10)
)

1.	 Download	the	file	week05_scrabble.py.	This	file	contains	a	tuple	of	the	letters	in	the
alphabet	with	their	corresponding	scrabble	value.	Write	a	function	read_scores
which	takes	a	tuple	like	this	as	an	argument	and	creates	a	dictionary	that	maps
letters	to	their	scrabble	score.

Why	can’t	we	create	a	dictionary	that	does	the	reverse	—	that	is,	maps	a
scrabble	score	to	the	letter	which	gains	that	score?

2.	 Write	a	function	get_score(scores,	word),	that	takes	as	input	the	scores	dictionary
and	a	string	containing	a	word,	and	returns	the	word’s	scrabble	score.	(You	may
assume	that	the	input	string	only	consists	of	lowercase	letters.)	For	example:

	>>>	scores	=	read_scores('scrabble_scores.txt')
	>>>	get_score(scores,	'quack')
	20

3.	 Modify	your	get_score	function	so	that	it	now	ignores	characters	for	which	it	does
not	have	a	corresponding	score:

	>>>	get_score(scores,	'%fishing_')
	14

Challenge:	Make	it	a	Class

Create	a	ScrabbleScore	class	that	has	methods	read_scores	and	get_score.	These
methods	should	have	the	same	functionality	as	the	two	functions	described
above.	Explain	why	it	is	more	appropriate	to	implement	this	functionality	as	a
class	than	as	two	separate	functions.

Frequency	Analysis
In	cryptography,	one	method	that	can	be	applied	to	cracking	a	secret	message	is



frequency	analysis.	Frequency	analysis	involves	determining	how	many	times	each
letter	occurs	in	a	given	message	and	then,	based	on	what	language	you	are	using,
guessing	certain	letters,	(for	instance,	in	English	the	most	used	character	is	‘e’,	so
you	might	guess	the	most	frequently	occurring	letter	in	a	secret	message	is	actually
‘e’).

1.	 Write	a	function	letter_frequency(message),	which	takes	as	input	a	string	message
and	returns	a	dictionary	mapping	the	characters	used	in	the	message	to	the
number	of	times	they	occurred	in	the	message.	Upper-case	and	lower-case
letters	are	considered	the	same	and	non-alphabetical	characters	should	be
ignored:

	>>>	letter_frequency('secrets')
	{'S':	2,	'E':	2,	'C':	1,	'R':	1,	'T':	1}

2.	 Write	a	function	max_letter(freqs),	which	takes	as	input	a	dictionary	mapping
letters	to	occurrences,	like	you	would	get	from	part	1.	It	should	return	the	letter
with	the	highest	frequency,	or	in	the	case	of	a	tie,	any	1	of	the	most	common
letters:

Challenge:	Multiple	Max	Frequencies

Modify	the	max_letter	function	to	instead	return	a	list	of	all	the	letters	with	the
highest	frequency.	e.g.	If	there	is	a	tie	in	the	maximum	frequency	a	list	of
multiple	letters	should	be	returned.	If	there	is	only	one	highest	frequency,
return	a	list	with	a	single	element	in	it.


