
Expressions	and	Control	Structures

About	Tutorials

The	aim	of	the	CSSE1001/CSSE7030	tutorial	(T)	sessions	is	to	give	additional
practice	at	writing	computer	programs.	The	tasks	are	designed	to	be	completed
by	a	group	of	two	or	three	students	working	together,	so	it	is	strongly
recommended	that	you	sit	with	other	students,	and	use	a	lab	machine	instead	of
a	laptop.	Making	use	of	the	course	notes	and	lecture	material	is	also
encouraged.	If	you	are	on	a	lab	machine	ensure	that	you	open	up	the	Python
interpreter,	IDLE,	and	not	one	of	the	other	Python	interpreters	that	may	be
installed	on	the	system.

Tutors	are	present	at	the	session	to	provide	assistance	and	insight	into	the
tasks,	so	ask	them	questions	when	you	get	stuck.	Note	that	tutors	will	not
provide	assistance	for	the	assignment	tasks	in	the	T	sessions;	for	that,	you
should	attend	any	of	the	timetabled	P	sessions.

Attendance	at	these	sessions	is	not	marked,	however	you	will	miss	out	on
learning	opportunities	by	not	attending.	Students	often	find	that	the	learning
experiences	from	the	tutorials	are	directly	helpful	in	completing	the
assignments	and	the	final	exam.

Hello,	World!

The	purpose	of	this	task	is	to	become	familiar	with	writing,	saving,	and	running
programs	from	IDLE.	Write	a	program	which,	when	run,	outputs	the	text	Hello,	
World!,	and	save	it	as	hello.py.

Then,	close	IDLE,	and	navigate	the	file-system	(in	Windows	Explorer	or	equivalent)	to
find	the	program	you	just	wrote,	open	it	in	IDLE,	and	run	it.

Next,	modify	the	program	to	first	ask	the	user	what	their	name	is	(using	input),	and
then	output	a	greeting	using	their	name.	For	example	(the	blue	text	is	output	from	the
program,	the	black	text	is	input	from	the	user):

>>>
RESTART:	H:/CSSE1001/Python	Code/Week2/hello.py
What	is	your	name?	Sir	Lancelot	of	Camelot
Hello,	Sir	Lancelot	of	Camelot!
>>>

Hint:

Create	a	Python	source	code	file	by	selecting	“New”	from	the	File	menu	in
IDLE,	or	using	the	Ctrl-N	shortcut.
Save	the	file	in	a	location	where	you	will	be	able	to	find	it.	On	the	lab
machines,	the	H:	drive	is	your	personal	network	drive,	which	can	be
accessed	from	any	EAIT	machine	(U:	is	the	equivalent	of	the	science	H:).
Files	saved	to	the	C:	drive	might	not	be	accessible	after	logging	off.

By	default,	IDLE	will	not	add	a	file	extension	to	your	files.	You	must
manually	add	.py	to	the	end	of	the	filename	in	order	to	keep	the	syntax
highlighting.

Guess	the	Expression

For	each	of	the	below	expressions,	make	a	guess	on	what	the	result	of	the	expression
should	be.	Discuss	your	guesses	with	the	other	people	at	your	table,	or	with	a	tutor,
before	running	the	code	in	IDLE.	After	running	the	code,	if	you	didn’t	guess
correctly,	discuss	why	it	produced	the	result	that	it	did,	or	experiment	with	some
other	examples	yourself.

>>>	3--2
>>>	5	/	2
>>>	-5	/	2
>>>	5	//	2
>>>	-5	//	2
>>>	5.0	/	2
>>>	5.0	//	2
>>>	3.0	-	5	/	2
>>>	3.0	-	5	//	2
>>>	'3'	+	'12'
>>>	3	+	'12'
>>>	3	*	'12'
>>>	'ba'	+	'na'	*	2
>>>	'hello'	-	'o'
>>>	'ababab'	/	3
>>>	2	**	3
>>>	9	**	1/2
>>>	11	%	4
>>>	-11	%	4
>>>	'Tim'	>	'Tom'
>>>	'A'	<	'a'

Leap	Years

A	leap	year	occurs	when	the	year	is	a	multiple	of	four,	unless	the	year	is	a	multiple	of
100.	However,	if	the	year	is	a	multiple	of	400,	then	it	is	a	leap	year.	For	instance,
2016	and	2000	are	leap	years,	but	1900	is	not.

Create	a	new	Python	source	file,	and	write	a	program	leap_year.py	which	asks	the	user
to	enter	an	integer	(representing	a	year),	and	prints	True	if	the	year	is	a	leap	year,	and
False	if	not.

>>>
RESTART:	H:/CSSE1001/Python	Code/Week2/leap_year.py
Please	enter	a	year:	2018
False
>>>
RESTART:	H:/CSSE1001/Python	Code/Week2/leap_year.py
Please	enter	a	year:	2020
True
>>>
RESTART:	H:/CSSE1001/Python	Code/Week2/leap_year.py
Please	enter	a	year:	2100
False
>>>

RESTART:	H:/CSSE1001/Python	Code/Week2/leap_year.py
Please	enter	a	year:	2000
True
>>>

Challenge	1:	Days	of	the	Week

Research	Zeller’s	congruence,	and	write	a	program	which	takes	as	input,	the
day	of	the	month,	the	month,	and	the	year,	and	prints	the	day	of	the	week
corresponding	to	that	date.	Design	a	set	of	example	cases	to	check	you’ve
implemented	the	logic	correctly.

Powers	of	Two

Write	a	program	that	takes	a	positive	integer	as	an	input.	Output	a	simple	table	that
lists	the	powers	of	two	up	to	the	integer	value	passed	to	the	program.	The	output
should	look	as	follows:

>>>
RESTART:	H:/CSSE1001/Python	Code/Week2/powers_of_two.py
Enter	the	power:	0
0	1
>>>
RESTART:	H:/CSSE1001/Python	Code/Week2/powers_of_two.py
Enter	the	power:	1
0	1
1	2
>>>
RESTART:	H:/CSSE1001/Python	Code/Week2/powers_of_two.py
Enter	the	power:	3
0	1
1	2
2	4
3	8
>>>

Guess	a	Number

Write	a	program	that	asks	a	user	to	guess	a	number	between	1	and	100.	The	program
should	generate	a	random	number	and	repeatedly	ask	the	user	to	input	a	number
until	they	guess	the	correct	number.	When	they	guess	the	correct	number,	the
program	should	output	Congratulations!	and	then	terminate.	The	user	may	give	up	by
entering	-1	and	the	program	will	output	the	number	the	user	was	trying	to	guess	and
then	terminate.	The	output	of	the	program,	if	run	in	IDLE,	should	look	like:

>>>
RESTART:	H:/CSSE1001/Python	Code/Week2/guess_number.py
Try	to	guess	the	number	I	am	thinking	of	between	1	and	100.
Please	enter	your	guess:	23
Sorry	that	is	not	correct.
Please	enter	your	guess:	42
Congratulations!	You	have	guessed	correctly.
>>>

RESTART:	H:/CSSE1001/Python	Code/Week2/guess_number.py
Try	to	guess	the	number	I	am	thinking	of	between	1	and	100.
Please	enter	your	guess:	42
Sorry	that	is	not	correct.
Please	enter	your	guess:	-1
The	number	you	were	trying	to	guess	was	2.
>>>

Hint:	To	generate	random	integers,	first	put	import	random	at	the	top	of	the	file,
then	use	the	function	call	random.randint(1,	100)	to	generate	a	random	integer
between	1	an	100.

>>>	import	random
>>>	random.randint(1,	100)
73
>>>	x	=	random.randint(1,	100)
>>>	x
22

You	can	also	type	>>>	help(random.randint)	at	the	prompt	to	get	more
information.	Type	help(random)	or	dir(random)	to	find	more	functions	in	the
random	module,	or	look	at	the	online	documentation.

Alice’s	Addition	Academy

Your	5-year	old	cousin	Alice	is	learning	addition,	and	you	have	decided	to	write	a
program	she	can	use	to	practice	with.	The	program	will	generate	two	random	2-digit
integers,	and	ask	the	user	what	the	sum	of	the	two	integers	is,	and	display	whether	or
not	the	user	is	correct.	If	the	user	is	incorrect,	also	display	the	correct	answer.

Some	example	interactions	with	the	program	are	as	follows:

>>>
RESTART:	H:/CSSE1001/Python	Code/Week2/arithmetic_academy.py
70	+	17	=	87
Correct!
>>>
RESTART:	H:/CSSE1001/Python	Code/Week2/arithmetic_academy.py
99	+	56	=	156
No,	the	correct	answer	is	155
>>>

Challenge	2:	Advanced	Academy

Modify	the	above	program	so	that	it	asks	a	set	of	10	questions,	rather	than	just
one	question.

https://docs.python.org/3.9/library/random.html

Challenge	3:	Advanced	Academy	(Hard!)

Modify	the	above	program	so	that	it	also	randomly	selects	an	operator	from	the
six	options	+	-	*	//	**	%,	to	test	Alice’s	abilities	with	all	of	them.	If	the	**
operator	is	being	used,	the	exponent	should	be	randomly	chosen	between	0	and
3,	instead	of	between	10	and	99.

