
File	I/O	and	Processing
Function	Finder
In	this	task,	we	will	write	a	function	that	reads	and	analyses	Python	source	code	files.
The	function	we	write	will	find	all	function	definitions	within	the	file.

1.	 Write	a	function	find_functions(filename)	that	takes	the	name	of	a	file	containing
Python	code,	and	finds	the	name	of	each	function	defined	in	the	file.	The	output
should	be	written	to	a	file	called	functions.txt,	with	one	function	name	per	line.
You	may	like	to	use	the	sample	file	week06_functions.py	to	test	your	code.	For	this
file,	the	output	file	functions.txt	should	contain:

	def	square(x):
	def	add(x,	y):
	def	get_0():

2.	 Modify	this	function	to	instead	return	a	list	of	tuples	of	the	form	(linenum,	name,	
args),	where	name	is	the	name	of	a	function,	args	is	a	tuple	of	parameter	names	to
the	function,	and	linenum	is	the	line	number	containing	the	function	definition.
For	example:

	>>>	find_functions('week06_functions.py')
	[(1,	'square',	('x',)),
	(5,	'add',	('x',	'y')),
	(14,	'get_0',	())]

Challenge:	Extract	and	Parse	Function	Comment

Modify	this	function	to	parse	the	function’s	comment	and	include	it	in	the	tuple
that	represents	a	function.	Make	use	of	the	Python	convention	for	function
comments.	Tackle	this	problem	in	four	stages.

1.	 Extract	only	the	first	line	of	text	after	the	opening	"""	as	the	summary
comment.	Include	this	as	a	string	in	the	tuple	representing	a	function,	
(linenum,	name,	args,	summary_comment).

2.	 If	the	closing	"""	for	the	comment	is	not	on	the	same	line	as	the	opening	
""",	assume	that	there	is	a	blank	line	and	then	read	the	following	lines	until
the	closing	""".	This	makes	up	the	details	of	the	comment.	Create	a	tuple
that	includes	the	summary	and	the	details	as	two	strings,	(summary,	
details);	and	include	this	in	the	tuple	representing	a	function,	(linenum,	
name,	args,	comment).

3.	 Now,	for	a	further	challenge,	based	on	the	Google	Python	commenting
style,	as	demonstrated	in	lectures;	extract	the	description	of	the
parameters,	return	value	and	preconditions	from	the	function	comment.
Put	these	as	separate	entries	in	the	tuple	that	represents	the	comment,	
(summary,	[parameter_descriptions],	return,	preconditions).	(Each	parameter
description	is	on	a	separate	line,	so	may	be	a	list	of	strings.)	Include	this
comment	tuple	in	the	tuple	representing	a	function,	(linenum,	name,	args,	



comment).
4.	 Now	create	a	tuple	that	is	the	parameter	name	and	the	comment

describing	the	parameter,	(parameter_name,	comment).	In	the	tuple	that
represents	a	function,	replace	the	tuple	of	parameter	names	with	a	list	of
tuples	that	has	the	parameter	name	and	descriptive	comment,	(linenum,	
name,	[args],	comment).	The	rest	of	the	function	comment	can	still	be
included	in	the	comment	tuple	as:	(summary,	return,	preconditions).

Test	your	code	using	some	of	the	code	you	have	written	and	the	lecture
examples.

>>>	find_functions('week04b-grade_book.py')
[(156,	'calculate_percentage',	[('results',	'results	(list):	Results	for	all	
assessment	items.')],	('Calculate	the	percentage	achieved	based	on	these	
results.',	'float:	Percentage	based	on	assessment	item	results	&	their	
weights.')),	
	(173,	'process_results',	[('results',	'results	(list):	List	of	each	
student's	results	in	each	course.')],	('Calculate	grades	for	students	based	
on	their	results	in	courses.',	'list:	List	of	final	grades	of	each	student	in	
each	course:')),	
	(197,	'get_exam_cap',	[('course_code',	'course_code	(str):	Course	code	used	
to	look	up	exam	cap.')],	('Find	the	exam	cap	for	this	course.',	'The	caps	
required	to	achieve	each	grade	level	in	this')),	
	(215,	'get_grade_cutoffs',	[('course_code',	'course_code	(str):	Course	code	
used	to	look	up	grade	cut	offs.')],	('Find	the	grade	cut	offs	for	this	
course.',	'list:	The	cut	offs	for	each	grade	level	in	this	course	(7	...	
2).')),	
	(232,	'final_grade',	[('final_mark',	'final_mark	(float):	Final	mark	
achieved	in	a	course.'),	('exam_result',	'exam_result	(int):	Mark	achieved	in	
the	final	exam	for	the	course.'),	('grade_cutoffs',	'grade_cutoffs	(list):	
Final	mark	required	for	each	grade	level.'),	('exam_cap',	'exam_cap	(list):	
Minimum	mark	required	in	the	exam	to	achieve')],	('Calculate	a	student's	
final	grade	for	a	course.',	'int:	Grade	level	achieved	in	this	course	(7	...	
1).')),	
	(282,	'output_grades',	[('grades',	)],	('Simple	formatted	output	of	final	
results	for	all	students.',	)),	
	(289,	'demo',	[],	('Demonstration	of	functionality.',	))]	

Note	that	in	the	output	above,	space	has	been	inserted	between	each	of	the
tuples	representing	a	function.	This	has	been	done	to	make	the	output	more
readable.	The	output	from	executing	the	function	in	Python	would	not	have
these	spaces.

Reading	Configuration	Files
When	an	application	has	to	store	information	about	how	it’s	configured	(for	example,
a	user’s	preferences),	it	can	do	it	by	writing	the	information	to	a	file,	which	can	later
be	retrieved.	When	reading	the	configuration	file,	the	application	must	translate	the
file	into	a	suitable	format,	such	as	a	dictionary.

Download	the	file	week06_config.txt,	which	contains	the	following:

[user]
name=Eric	Idle
email=e.idle@pythons.com
mobile=0412345678
[notifications]



email=yes
sms=no

In	this	format,	each	piece	of	data	has	a	name	(e.g.	email)	and	a	value	(e.g.	
e.idle@pythons.com).	The	names/values	are	grouped	under	a	heading	(such	as	user	or	
notifications).	Each	line	in	the	file	contains	either	a	heading	(surrounded	by	[]
brackets),	or	a	name/value	pair	(separated	by	an	=).	Write	a	function	read_config	which
takes	a	configuration	file	such	as	this,	and	returns	a	dictionary	representation	of	the
data,	as	in	this	example:

>>>	read_config('config.txt')
{'user':	{'name':	'Eric	Idle',
										'email':	'e.idle@pythons.com',
										'mobile':	'0412345678'},
	'notifications':	{'email':	'yes',	'sms':	'no'}}

Also	write	a	function	get_value	which	takes	the	above	dictionary,	and	the	dot-
separated	name	of	a	setting	(e.g.	‘user.mobile’),	and	returns	the	appropriate	value
(‘0412345678’	in	this	case).	It	is	safe	to	assume	the	inputs	are	valid.

>>>	config	=	read_config('config.txt')
>>>	get_value(config,	'user.mobile')
'0412345678'
>>>	get_value(config,	'notifications.email')
'yes'

Modify	your	read_config	function	so	that	it	raises	a	ValueError	if	the	file	is	invalid;	that
is,	if	the	file	contains	a	line	which	does	not	look	like	[...]	or	...=...,	or	if	the	file
contains	any	name/value	pairs	before	the	first	heading.	You	may	wish	to	test	your
code	on	the	following	files:	week06_bad_config1.txt	and	week06_bad_config2.txt.

Throughout	this	exercise,	it	is	safe	to	assume	that	the	headings/names/values	in	the
file	do	not	contain	the	characters	[	]	=,	and	that	the	headings/names	do	not	contain
‘.’

Challenge:	Create	a	Class

Create	a	UserData	class	that	has	the	methods	read_config	and	get_value.	These
methods	should	have	the	same	functionality	as	the	two	functions	described
above.	Explain	why	it	is	more	appropriate	to	implement	this	functionality	as	a
class	than	as	two	separate	functions.


