
Functional	Decomposition
Leap	Years

Convert	the	leap	year	program	you	wrote	in	week	2	to	a	function.	The	function	should
take	a	single	integer	parameter	representing	a	year	(e.g.	2018),	and	return:	True	if	the
year	is	a	leap	year,	and	False	if	not.

Write	a	docstring	comment	for	your	function	that	explains	how	it	is	to	be	used.

As	a	reminder,	a	leap	year	occurs	when	the	year	is	a	multiple	of	four,	unless	the	year
is	a	multiple	of	100.	However,	if	the	year	is	a	multiple	of	400,	then	it	is	a	leap	year.
For	instance,	2016	and	2000	are	leap	years,	but	2100	is	not.

Turtle	Logic

In	this	task,	we	will	use	the	turtle	graphics	module	for	drawing	basic	shapes,	by
moving	a	‘turtle’	across	the	screen,	drawing	a	path	as	it	travels.	We	can	use	the	turtle
functionality	if	we	put	the	line	import	turtle	at	the	top	of	our	file.	The	turtle	module
contains	many	functions,	we	will	use	the	following:

turtle.forward(distance)	moves	the	turtle	forward	by	a	given	distance.
turtle.back(distance)	moves	the	turtle	backwards.
turtle.left(angle)	turns	the	turtle	left	by	angle	degrees.
turtle.right(angle)	turns	the	turtle	right.
turtle.setheading(angle)	sets	the	turtle’s	direction	in	degrees	(0	is	east,	90	is
north,	180	is	west,	270	is	south).
turtle.reset()	removes	all	drawings	and	moves	the	turtle	back	to	its	original
position	and	orientation.
turtle.exitonclick()	sets	the	window	to	close	when	clicked.
turtle.bye()	closes	the	window.	Clicking	the	close	icon	on	the	window	may	not
work.

Note:	See	https://docs.python.org/3.6/library/turtle.html	for	a	more	complete
description	of	the	turtle	module.

The	turtle	begins	facing	‘east’	(i.e.	to	the	right).	For	example,	the	following	code
produces	the	image	below.

import	turtle

def	demo()	:
				"""Turtle	demo."""
				turtle.forward(100)
				turtle.left(120)
				turtle.forward(80)
				turtle.right(90)
				turtle.forward(80)
				turtle.exitonclick()

if	__name__	==	"__main__"	:
				demo()

https://docs.python.org/3.6/library/turtle.html


Create	a	file	which	contains	the	following	functions.	NOTE:

Put	the	line	import	turtle	at	the	top	of	your	code.
DO	NOT	save	your	file	as	turtle.py,	this	will	cause	the	import	to	fail.	Choose	a
different	file	name,	but	make	sure	you	add	the	.py.	If	you	do	save	your	file	as
turtle.py,	you	must	delete	or	rename	your	file.
Be	sure	to	call	turtle.exitonclick()	after	drawing,	either	by	putting	at	the	end	of
your	main	function	or	manually	running	it	through	IDLE	(otherwise,	the	turtle
window	will	crash	when	running	in	IDLE).

1.	 rectangle(width,	height),	which	draws	a	rectangle	with	the	given	side	lengths.
Ensure	that	the	cursor	finishes	pointing	east.

2.	 rotated_rectangle(width,	height,	angle),	which	draws	a	rectangle	rotated
anticlockwise	by	the	given	angle.	Ensure	that	the	cursor	finishes	pointing	east.

Hint:	This	can	be	done	in	only	four	lines	of	code,	including	the	def	...,	and	not
including	the	function	comment.

3.	 polygon(radius,	num_sides),	which	draws	a	regular	polygon	with	n	sides,	and	side
length	radius	*	sin(π	/	num_sides).

Hint:	If	the	turtle	moves	anti-clockwise,	it	will	turn	a	total	of	360°,	in	n	equal
movements.	The	math	module	contains	trigonometric	functions	and	mathematical
constants.	Remember	to	import	math.

4.	 interact(),	which	first	asks	the	user	for	a	distance,	then	repeatedly	asks	for	a
direction	to	move,	from	the	options	n/s/e/w	(north/south/east/west	respectively),
and	then	moves	in	that	direction	by	the	given	distance.	If	the	user	enters	q,	the
turtle	window	closes	and	the	function	ends.	If	the	user	enters	any	other	input,	an
error	message	is	printed,	as	in	the	example.

Challenge:	Square	Spirals	Write	a	function	spiral(num_lines,	step_size),	which
draws	a	square	spiral	with	num_lines	lines,	which	starting	from	the	centre	have
length	s,	s,	2s,	2s,	3s,	3s,	…,	where	s	=	step_size	(note	that	this	is	also	the
distance	between	two	adjacent	parallel	lines).	The	example	below	shows	a
spiral	of	20	lines,	which	makes	five	full	revolutions,	with	a	step	size	of	20.


