
Lambdas	&	List	Comprehension
Map,	Filter	and	Reduce
There	are	a	few	functions	in	Python	that	allow	you	create	and	alter	lists,	in	useful
ways,	without	having	to	use	large,	cumbersome	for	loops.	These	functions	are	map,	
filter	and	reduce,	and	they	each	make	use	of	lambda	functions	to	perform	their
associated	task.	For	the	most	part,	these	functions	are	somewhat	inferior	to	using	the
list	comprehension	syntax	in	Python	but	they	do	have	their	niche	purposes.	In	this
tutorial	we	will	make	use	of	both	constructs	to	get	a	feel	for	both	list	comprehensions
and	using	lambda	functions

1.	 Given	a	list	of	Fahrenheit	temperatures,	produce	a	list	of	converted	Celsius
temperatures,	rounded	to	1	decimal	point:
1.	 Using	a	singular	list	comprehension
2.	 Using	the	built-in	map	function	and	lambda	functions

Map

The	map	built-in	function	takes	two	arguments:

1.	 A	function	which	takes	one	element	and	returns	the	new	transformed
element.

2.	 An	iterable	(list,	string,	tuple	etc.)	which	then	has	the	function	applied
to	each	element.	It	then	returns	a	map	object,	which	can	be	converted
to	a	list	using	list().

2.	 Given	a	list	of	integers,	produce	a	list	that	only	contains	the	numbers	from	the
previous	list	that	are	both	even	and	greater	than	15:
1.	 Using	a	singular	list	comprehension
2.	 Using	the	built-in	filter	function	and	lambda	functions

Filter

The	filter	built-in	function	takes	two	arguments:

1.	 A	function	which	takes	one	element	and	returns	True	if	the	element
should	be	in	the	filtered	set,	or	False	if	it	should	not

2.	 An	iterable	(list,	string,	tuple	etc.)	which	then	has	the	function	applied
to	each	element	It	then	returns	a	filter	object,	which	can	be	converted
to	a	list	using	list()

3.	 Produce	a	list	of	the	squares	of	every	odd	number	up	to	30:
1.	 Using	list	comprehension
2.	 Using	map,	filter	and	lambda	functions

4.	 Using	the	reduce	function	from	the	functools	module	and	an	appropriate	lambda
function,	calculate	the	maximum	number	in	a	list.



Reduce

The	reduce	function	is	a	bit	more	complex.	It	takes	two	arguments:

1.	 A	function	which	takes	two	arguments	and	returns	a	single	result
2.	 An	iterable	(list,	string,	tuple	etc.)	which	has	the	function	applied	to
its	elements	The	function	is	applied	cumulatively	to	the	elements	in
the	list	from	left	to	right.	To	clarify,	the	function	is	applied	to	the	first
two	elements	of	the	list.	The	function	is	then	applied	again	using	the
result	of	the	first	function	call	as	argument	one	and	the	third	element
of	the	list	as	argument	two.	This	process	repeats	until	the	list	is
exhausted.

Note:	Remember	to	import	reduce	from	the	functools	module!

Caesar	Cipher
A	Caesar	Cipher	(also	known	as	a	shift	cipher)	is	a	very	simple	type	of	cipher	in	which
each	letter	in	the	alphabet	is	shifted	along	a	set	number	of	characters	to	produce	the
encrypted	message.	For	example,	with	a	‘shift’	of	3,	A	becomes	D,	B	becomes	E,	C
becomes	F	etc.

Using	list	comprehensions	or	lambda	functions,	implement	a	Caesar	Cipher	with	shift
3.	You	may	assume	the	message	string	consists	of	entirely	uppercase	characters.	Your
implementation	should	take	a	string	message	and	return	a	newly	encrypted	string.

Hints:

You	can	get	a	string	of	all	uppercase	characters	by	importing	ascii_uppercase
from	the	string	module:	from	string	import	ascii_uppercase	You	may	find	the	built-
in	functions	ord	and	chr	useful,	in	conjunction	with	an	ASCII	table

Challenge:	Advanced	Cipher

Modify	your	Caesar	Cipher	so	that	it	can	now	handle	spaces	in	the	original
message.	The	encrypted	messages	should	have	spaces	where	the	original	had
them.


