
Graphical	User	Interfaces	–	Part	2
Find	My	Position
In	this	tutorial,	we	will	build	an	application	which	allows	the	user	to	draw	straight
lines	with	their	mouse.	To	start	with,	download	and	run	the	file	week10_gui2_starter.py,
which	creates	a	Canvas,	a	Frame	(using	a	custom	SettingsFrame	class	that	inherits	from	
Frame),	and	a	Menu.	The	SettingsFrame	contains	a	Label	and	a	Button.

In	the	finished	application,	users	will	be	able	to	click	on	the	canvas,	move	the	mouse
to	see	a	preview	of	the	line,	then	click	again	to	finish	drawing	the	line.	The	user	will
also	be	able	to	turn	the	preview	on	or	off.	Your	tutor	will	demonstrate	how	a	finished
version	should	work.

Modify	the	program	so	that	moving	the	cursor	over	the	canvas	changes	the	“Current
Position”	label	to	the	position	of	the	cursor,	as	in	the	following	example.	(Hint:	You
will	need	to	edit	the	provided	evt_motion	and	set_position	methods.)

Next,	modify	the	SettingsFrame	class	so	that,	if	the	“Preview	On”	button	is	clicked,	it
will	turn	grey	and	change	its	text	to	“Preview	Off”	(as	in	the	screen	shot	above),	and	if
clicked	again,	it	will	go	back	to	green	with	“Preview	On”.

Also	write	the	method	is_preview_on	to	return	True	or	False	depending	on	the	preview
setting	(we	will	use	this	method	later	when	we	write	the	code	which	draws	the
preview	lines).

Hint:

When	a	mouse	event	occurs,	the	.x	and	.y	attributes	tell	us	where	the	mouse	is;
use	this	to	configure	the	label.	The	string	.format	method	could	be	useful	to
format	the	information.

To	keep	track	of	whether	the	preview	option	is	on,	create	an	extra	boolean
attribute	of	the	class!

The	Line	Must	Be	Drawn	Here!
Modify	the	program	so	that	when	the	user	clicks	in	two	locations,	the	application	will
draw	a	line	between	those	two	points.	A	third	and	fourth	click	should	draw	a	second
line,	two	further	clicks	should	draw	a	third	line,	and	so	on.

Hint:

Bind	a	method	to	'<Button-1>'	to	find	out	when	the	mouse	is	clicked.	You	may
need	to	create	attributes	in	the	class	to	store	certain	information,	such	as
whether	or	not	the	user	has	made	the	first	click	of	a	line,	and	where	that	click
was	made.	Use	the	Canvas’	create_line	method	to	draw	a	line,	for	instance:	



self._canvas.create_line((100,	100),	(200,	200)).	

I	Need	to	See	Where	I’m	Going
Modify	the	program	so	after	the	first	click,	the	user	will	see	a	‘preview’	of	their	line
which	follows	the	cursor,	but	only	if	the	preview	button	is	set	to	“On”	(use	the	
is_preview_on	method	that	we	wrote	earlier	to	tell	if	the	preview	line	should	be	drawn;
recall	that	this	method	returns	True	if	the	line	should	be	drawn).

Hint:

One	way	to	accomplish	this	is	to	first	add	a	method	which	deletes	all	items	on
the	Canvas	(self._canvas.delete(tk.ALL)),	then	redraws	all	items	that	should	be
present.	To	do	this,	create	a	list	attribute	in	the	class	to	store	information	about
all	the	lines	in	the	application	(for	example,	the	two	pairs	of	coordinates),	so
that	the	entire	drawing	can	be	remade	from	the	list.

Another	way	to	do	this	is	to	just	change	the	coordinates	of	the	preview	line
whenever	the	mouse	moves.	To	do	this,	store	the	return	value	of	the	call	to	
create_line	which	creates	the	preview	line	(this	return	value	is	an	integer	which
the	canvas	uses	to	uniquely	identify	the	line).	Then,	to	move	the	preview	line,
call	the	canvas’	coords	method:	self._canvas.coords(ID,	x1,	y1,	x2,	y2)	with	the
line’s	ID	as	the	first	parameter,	and	the	new	coordinates	as	the	four	remaining
parameters.

Depending	on	what	information	is	stored	in	the	class,	you	may	need	to	modify
the	clear	method	to	reset	this	information	(otherwise	previously	deleted	lines
might	reappear).


