
Recursion

Review:	Recursion

A	recursive	function	is	one	which	makes	a	call	to	itself	in	its	body,	with	a
different	input.	That	inner	function	call	might	then	call	itself	again,	with	a	third
input.	This	repeats	until	no	self-calls	are	made;	this	is	known	as	a	base	case
(without	a	base	case,	the	function	will	call	itself	endlessly).

A	recursive	function	on	a	list	will	often	use	a	small	list	(length	0	or	1)	as	a	base
case,	and	the	recursive	case	will	often	call	itself	with	a	list	slice	that	excludes
one	element	(but	not	always).	For	example,	the	following	function	computes	the
sum	of	a	list	of	numbers:

def	add(list)	:
				if	list	==	[]	:
								return	0
				else	:
								return	list[0]	+	add(list[1:])

In	the	recursive	case	of	this	function,	the	add	function	calls	itself	with	element	0
excluded	(list[1:]).	It	then	combines	the	result	of	the	recursive	call	with	the
excluded	element	(list[0]).

You	may	find	this	YouTube	video	helpful	in	trying	to	understand	recursion.

Minimums
Write	a	recursive	function	which	takes	a	list	of	numbers	and	returns	the	smallest
element	in	the	list.	If	the	list	is	empty,	raise	a	ValueError.

Debugging	Recursive	Functions
The	following	function	aims	to	find	the	sum	of	a	list,	but	it	does	not	always	work.
Determine	why	and	modify	the	function	definition	to	fix	this	error.

def	add2(list)	:
				if	list	==	[]	:
								return	0
				else	:
								mid	=	len(list)	/	2
								return	add2(list[:mid])	+	add2(list[mid:])

Family	Trees
One	of	the	common	uses	of	recursive	functions	is	with	recursive	data	structures,	like
trees.	Consider	a	family	tree:	a	person	can	have	children,	and	their	children	can	have

https://www.youtube.com/watch?v=Px8dgjKeh5I


children,	and	their	children	can	have	children	etc.	This	shows	that	this	family	tree	is	a
recursive	data	structure	and	we	will	now	write	some	recursive	functions	to	take
advantage	of	this	structure.

For	this	task,	use	the	provided	Person	class	(week11_person.py)	which	models	a	family
tree.	Write	2	recursive	methods	for	this	class:

1.	 num_descendants:	which	takes	no	arguments	and	returns	the	total	number	of
descendants	that	the	person	has	(ie.	number	of	children	+	number	of
grandchildren	+	number	of	great-grandchildren	etc.)

2.	 has_descendant:	which	takes	another	Person	object	as	a	parameter	and	returns
True	if	the	provided	Person	object	is	a	descendant	of	this	Person	and	False
otherwise	(ie.	if	the	person	is	a	child,	or	grandchild	etc.)

Files	and	Folders
In	a	computer’s	file	system,	directories	(i.e.	folders)	can	contain	files,	as	well	as	other
directories.	This	self-similarity	(directories	contain	other	directories)	suggests	that	we
should	use	recursive	functions	to	traverse	the	file	system.

For	this	task,	write	a	function	list_files	which	takes	the	name	of	a	directory	as	input,
and	returns	a	list	of	all	filenames	that	can	be	accessed	from	that	directory	(i.e.	all	the
files	in	that	directory,	and	its	sub-directories,	and	its	sub-sub-directories,	and	so	on).
Identify	the	base	case	of	your	function.

An	example	of	using	this	function	follows	(obviously,	the	output	will	depend	on	what
is	in	the	directory	you	use	as	input;	this	is	a	fabricated	example).

>>>	list_files('H:/csse1001/')
['H:/csse1001/assign1.py',
	'H:/csse1001/assign1soln.py',
	'H:/csse1001/assign2.py',
	'H:/csse1001/lectures/recursion.py',
	'H:/csse1001/lectures/notes/add.py',
	'H:/csse1001/lectures/notes/search_tree.py',
	'H:/csse1001/tutorials/week2.py',
	'H:/csse1001/tutorials/week3.py',
	'H:/csse1001/tutorials/week11.py',
	'H:/csse1001/mypytutor/MyPyTutor.py',
	'H:/csse1001/mypytutor/MyPyTutor.pyw',
	'H:/csse1001/mypytutor/CSSE1001Answers/Introduction.py']

Hint:

To	interact	with	files	and	folders,	Python	provides	a	library	called	os.	The
functions	os.listdir,	os.path.join,	and	os.path.isdir	may	be	useful;	see	their	help
documentation,	and	the	following	examples.

>>>	import	os
>>>	directory	=	os.getcwd()			#	Get	the	name	of	the	directory	we	are	working	
in.
>>>	directory
'H:/csse1001'
>>>	os.listdir(directory)
['assign1.py',	'assign1soln.py',	'assign2.py',	'lectures',	'tutorials',	
'mypytutor']



>>>	os.path.join(directory,	'assign1.py')
'H:/csse1001/assign1.py'
>>>	os.path.isdir('H:/csse1001/assign1.py')
False
>>>	os.path.isdir('H:/csse1001/lectures')
True

It	may	help	to	use	the	list.extend	method;	if	a	and	b	are	lists,	a.extend(b)	will
append	every	element	from	b	into	a:

>>>	a	=	[1,	2]
>>>	b	=	[3,	4]
>>>	a.extend(b)
>>>	a
[1,	2,	3,	4]

Tower	of	Hanoi
Tower	of	Hanoi	is	a	simple	game.	There	are	3	pegs	and	N	number	of	disks.	The	disks
start	on	one	peg	and	are	arranged	in	decreasing	size	from	bottom	to	top.	The
objective	of	the	game	is	to	move	the	disks	from	the	first	peg	to	the	last	peg.	The	rules
are	that	you	cannot	place	a	larger	disk	on	top	of	a	smaller	disk,	and	that	you	can	only
move	one	disk	at	a	time.	See	this	YouTube	video	for	details	of	the	game	and	the
algorithm	to	solve	the	game.

Write	a	recursive	function	that	outputs	all	of	the	moves	required	to	win	the	game.	The
function	should	have	a	parameter	that	indicates	the	number	of	disks.	The	function
may	need	other	parameters.

Challenge:	Prove	it!

1.	 See	the	add	function	defined	in	the	Review	section	above.	Use
mathematical	induction	to	prove	that	this	function	always	returns	the
correct	value	(the	sum	of	list).

2.	 Use	strong	mathematical	induction	to	prove	that	your	modified	add2
function	always	returns	the	correct	value.	Identify	where	the	proof	fails	for
the	original	add2	function.

https://www.youtube.com/watch?v=5_6nsViVM00

